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CHAPTER 1

INTRODUCTION

Among today's flow-solvers for the Euler and Navier-Stokes equations, many

are based on upwind differencing. Prominent in use are Godunov-type schemes

[1], in which the upwind bias is achieved by using the solution to the Riemann

problem defined at each cell face. Riemann's initial-v_due problem, which is a

mathematical representation of the shock-tube problem [2], is well-understood and

easy to model. A membrane separating a gas at two different states is ruptured,

and shock, contact, and expansion waves are emitted when the two states interact.

In a Godunov-type scheme this event is supposed to happen at any cell face and

any time level.

The Riemann problem can be solved exactly with an iterative method, as

Godunov [3] did, or approximately, as Roe [4] did, leading to the concept of

the "approximate Riemann solver." In Roe's method the Euler equations are

linearized about an average state and then solved exactly. Eigenvectors of the

averaged flux Jacobian, which represent different types of waves, are allowed to

propagate with speeds equal to their corresponding eigenvalues. These waves

describe the difference in states across each cell face.

The "upwind" direction for each wave is clear in one-dimensional flow: it is

either forward or backward, according to the sign of each eigenvalue. In two or

three dimensions the direction of wave propagation is not so straightforward: the
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wavescan travel in infinitely many directions. In most current multidimensional

upwind flow-solvers, however, the upwinding direction is taken normal to the

cell faces. Thus the schemesare strongly coupled to the grid on which they are

implemented. Consequently,high resolution of flowfield discontinuities such as

shock or shear wavescan be achievedonly when the discontinuities are aligned

with grid lines. The R.iemannsolver interprets such wavesincorrectly when they

lie oblique to the grid; this improper interpretation can lead to smearing in the

numerical solution.

In recent years, in an attempt to improve the accuracy of flow solutions, a

number of researchershave developedmultidimensional upwind methods where

information is obtained from or propagatedin directions other than the grid con-

travariant directions. Initial investigations focused ori upwind finite-difference

schemesfor advection-dominated flows, e.g. Raithby [5], Hassan et al. [6], and

Lillington [7]. In these schemes, attempts were made to convect information in the

streamwise direction, independent of the grid orientation. Jameson [8,9] developed

a rotated difference scheme for the transonic potential equation. The equation is

written in a system of coordinates aligned with and normal to the local streamwise

direction. When the local flowfleld is supersonic, grid-aligned derivatives that are

used to form derivatives in the streamwise direction are upwind-differenced, while

all other derivatives are centrally-differenced.

Moretti [10], and later Verhoff and O'Neil [11], developed nonconservative

characteristic-based schemes for the Euler equations. These schemes define Rie-

mann variables, and employ grid-decoupled computational stencils determined

from the directions of the characteristics. The multidimensional Euler equations

reduce to a set of ordinary differential equations, coupled only through the source

terms due to entropy variation, which are typically small. Each ordinary differen-

tial equation describes the propagation of an individual wave along its characteris-
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tic. Because the schemes are nonconservative, conservation errors are introduced

when shock waves are present in the solution. These errors can be eliminated by

applying a shock correction after each iteration.

Goorjian [12] extended the method of Jameson for use with the Euler and

Navier-Stokes equations. This method was later improved by Obayashi and Goor-

]Jan [13]. In the latter method, grid-aligned input states are used to solve Riemann

problems in both the local streamwise and normal directions. In the normal di-

rection the Pdemann problem involves two acoustic waves only.

Colella [14] designed a predictor-corrector algorithm for systems of hyperbolic

conservation laws in which the left and right states at each grid face are modified

by waves traveling parallel to the interface. A standard grid-aligned Pdemann

solver is then used to obtain the flux across the face. This is still a direction-split

approach, in which an oblique wave would be represented by two grid-aligned

waves. A similar multidimensional method was developed independently by van

Leer [15].

Davis [16] developed a finite-volume method for the Euler equations in which

the difference formula and computational stencil vary with angle of assumed wave

propagation. The angle at each ceil face is determined by the velocity.difference

direction, which is normal to a hypothetical steady shock wave that exists between

the given states bordering the cell face. Derivatives in the grid-aligned frame

are written in terms of derivatives in the rotated frame. Fluxes normal to the

assumed frame are calculated using flux-vector splitting. The flux function along

the assumed shock is a central-difference flux with an arbitrary parameter that

insures stability. Davis' method locates steady shock waves very accurately, but

is unable to locate steady contact discontinuities.

Roe [17] designed a multidimensional method based on the decomposition of
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local gradients. The number and type of wavespresent is chosen,then angles,

strengths, and speedsare determined from the local data. One model usesfour

acoustic waveswith orientation ninety degreesapart, one entropy wave with ar-

bitrary orientation, and a shear wave representedby a uniform vorticity. Initial

efforts to implement this model have beenmade by Kroner [18] and Struijs et al.

[19].

Hirsch and Lacor [20] decouple the numerical solution from the grid-direction

by seeking an approximate diagonalization of the Euler equations. The equations

are written in terms of entropy, a component of velocity, and two acoustic-like

variables. In general, the Euler equations are not diagonalizable because the two

Jacobian matrices (in two dimensions) are not simultaneously diagonalizable. In

[20], however, the similarity transformation is based on derivatives of the solution,

allowing more freedom. Still, a source term may arise, which can be minimized.

Two physical directions play a crucial role in the definition of flow variables and

characteristic directions. One is aligned with the local pressure gradient, and the

second is related to the strain-rate tensor. In practice these two directions are

frozen to improve convergence. A variation of Raithby's [5] strearnline-upwinding

scheme is used to interpolate the flowfield variables, since standard grid-direction

interpolation was found to produce no advantage over grid-aligned methods.

Powell and van Leer [21] and Powell [22] implemented a cell-vertex scheme

for quadrilateral grids consisting of two basic steps: a residual calculation and a

residual distribution. In the first step the residual is calculated based on a flux

integral, and in the second step the residual is sent in a weighted manner only

to the nodes that define the "downwind" face. The convection directions and

corresponding characteristic quantities chosen are the same as those derived by

Hirsch and Lacor [20]. These directions can be frozen to help the convergence of

the scheme. A similar cell-vertex scheme was instituted by Giles et al. [23]. This



method differs from Powell'sprimarily in that the computations areperformed on

triangular grids using a trapezoidal rule integration for the residual calculation,

and the local flow direction (rather than characteristicdirections) is usedto define

the "downwind" face.

Levy et al. [24] developed a method which expands upon the work of Davis

[16]. A dominant-direction angle is chosen, either in the direction of the local

pressure gradient or the flow velocity, and two sets of left and right states are

obtained at each cell face via interpolation from the surrounding flowfield data.

One of these sets of left and right states is aligned with the dominant-direction,

while the other set is aligned normal to the first. Then, two Riemann-type solvers

are used to obtain fluxes in the rotated frame. The components of these fluxes in

the grid direction are added to obtain the flux at the face.

Parpia and Michalek [25] independently derived a grid-independent upwind

finite-volume method for the Euler equations very similar to the method proposed

in this thesis. Left and right states at an interface are still interpolated along grid

lines, but a multidimensional four-wave pattern made up of two acoustics, a shear,

and an entropy wave is assumed to describe the difference in states. The strengths

of these waves are chosen such that the sum of the jumps in the flow properties

across the waves is minimized.

Finally, Dadone and Grossman [26] developed a rotated upwind scheme for

the Euler equations in which flux-difference splitting is applied along two orthog-

onal directions for each cell face. The directions are determined from the pressure

gradient, and the left and right states are selected from appropriately chosen cells

near to the face where the flux is being computed.

One of the common features of many of the upwind methods described above

is that information needed at special points because of physical considerations
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must be interpolated from surrounding data points. Sincethis adds an extra level

of complexity to any method, particularly for non-Cartesian meshes, it was decided

early in the development of the present scheme to only use information obtained

by interpolation along grid lines as the input to the approximate Riemann solver.

It would then be the job of the solver to make "intelligent" use out of information

gleaned from these left and right states. This constraint puts some limits on the

ability of the solver to recognize what is going on in the flowfield, but the resulting

simplicity and low expense of the method seem to outweigh its drawbacks.

The current method uses five waves to describe the difference in states at a

grid face. Four of these are acoustic, shear, and entropy waves which act in the

velocity-difference direction (the same dominant-direction chosen by Davis [16]),

while the fifth is a shear wave that propagates at a right angle to the other four

(also used by Parpia and Michalek [25]). This fifth wave allows the method to

capture oblique steady shear waves sharply. The propagation directions can be

frozen to improve convergence. The method also makes use of the linearizations of

the Euler equations due to Roe [4] in order to maintain as simple and inexpensive

a scheme as possible.

This thesis is organized as follows. Chapter 2 briefly describes the two-

dimensional Euler and Navier-Stokes equations in Cartesian and generalized co-

ordinates, as well as the traveling wave form of the Euler equations. The spatial

and temporal discretization for both explicit and implicit time-marching schemes

are described in Chapter 3. Chapter 4 outlines the grid-aligned flux function of

Roe [4], while Chapter 5 details the derivation of the 5-wave grid-independent

flux function. Chapters 6 and 7 contain stability and monotonicity analyses of

the 5-wave model, respectively. Two-dimensional results are provided in Chapter

8. The extension to three dimensions is made in Chapter 9, with corresponding

results given in Chapter 10. Finally, Chapter 11 gives conclusions.



CHAPTER2

GOVERNING EQUATIONS

2.1 Two-Dimensional Navier-Stokes Equations

The two-dimensional Navier-Stokes equations in Cartesian coordinates can

be written in conservation form as

where the ._ indicates dimensional variables. The conserved variables are l_l =

[fi,#fi,_, fi/_] T, where fi is the density, _ and 6 are the components of velocity in

the _ and _ directions, and/_ is the specific total energy. The inviscid flux vectors

are

where the specific total enthalpy _r = _ + _/_. The viscous fluxes are

0

ka_
I ° ]Gv ---_ 12

/ - _zzk_¢ 'Lvje_j+

(2.3)

where

+Y-Z,,/ ' (2.4)

7
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In equations(2.3) and (2.4), summation conventionis implied and 171= £, _72= 6,

-'_1 = _, and 2(2 = Y.

The ideal-gas equation-of-state closes the set of equations:

_=(_-1)_ _ +v_ .
2

The above equations can be nondimensionalized as follows. First the Prandtl

number, Reynolds number, and freestream Mach number are defined by

Pr- /_p P_e- poo0oo_ Moo = qoo, (2.6)
poo aoo

where qo,, = V/fi2 + _SL is the freestream velocity and _ is some characteristic

length, specific to the problem considered. Then each of the variables is nondi-

mensionalized via:

{aoo P V_ = _ /z= /2 (2.7)

Assuming a calorically perfect gas, T is replaced by the expression

_2

_ (2.9)

and 5 is nondimensionalized by _¢¢.

After substitution, the nondimensional Navier-Stokes equations can be writ-

ten

0U OF 0G _ OF,, 0Gv (2.10)
o---F+-g-_ + oy o_ + 0---_-'

where

U

pv

pE

(2.11)
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F

FV

pu 2 +p

puv

pull

ol7"11

v21

_,-_j - Q_

G = (2.12)

G'V

puv

pv 2 + p

pv II

0

r12

r22

vj .,-,j - Q_
The nondimensional shear-stress and heat-flux terms are given by

(2.13)

_"J= _ "\ oxj + ox, ] + _-g-_°" J (2.14)

M_. 0(a2)
Qi =-RePr(_,- 1) OXi "

Again 111 = u, V2 = v, X1 = x, and X2 = y. The equation-of-state is

(2.15)

uS+v_) ' (2.16)p = (7- 1)p E 2 "

The Navier-Stokes equations can also be written in generalized curvilinear

coordinates, where the coordinate directions are defined by

(2.17)

Using the chain rule, the derivatives in curvilinear coordinates are written in terms

of the derivatives in Cartesian coordinates:

[_ _

The determinant of the 2 × 2 matrix in (2.18) is defined as the inverse of the metric

Jacobian J:

j-1 = z¢y, - z,y¢. (2.19)

Inverting (2.18), one can obtain the following equations for the metric terms:

_l_ = -JY_ Tly = Jx_.

(2.2o)
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The nondimensional Navier-Stokes equations (2.10) can be written in terms of the

curvilinear coordinates:

0U 0 0
+ _ (_,F+_G) + _ (_,F+_G) =

0--7 _"l (2.21)
0 0

0-_(f,F,,+ luG,,) + _ (rl,Fv + %G,,).

Multiplying (2.21)by j-1 applying the chain rule,and combining and cancelling

terms, the two-dimensional Navier-Stokes equations in curvilinear coordinates and

conservation form become:

where

0U* OF* _0G* _ OF* _,0G* (2.22)
o---V+--_-+ o_ o_ + o7

I]I pu

U* = j pv

pE

]F* 1 pu*u + _zP G* pv*u + rl, p
= -j pu*v + _uP pv*v + %p

pu*H pv*H

{,rll +F; = {,r=l +

_z(Vj,lj - Q1) -_- T2j -- (_2)

0

1 _=r11 -{-_U7"12

G* = _ r/mr21 + _7y TM

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
v* = T/zu + v/_v.

The terms u* and v* are the contravariant velocity components, and V1 and 172

represent u and v, respectively, rij and Qi are still given by (2.14) and (2.15), but

now
0 0 0

oxl - _'b_ +"N
0 0 0

ox, _'N + '7"_"

(2.28)
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Therefore, the shear stress and heat flux terms are

MOO

(2.29)

MOO

_22- Re {(_+ 2,)(4_v_+ _v,) + A(4,=¢+ ¢,=,)}

Moo/_

01 = RePr(7- I) {¢=(a=)_ +_=(a2)'I}

(2.30)

(2.3_)

(2.32)

M_/.t

Q= = ReP-_(7 - 1) {_(a2)_ + r/_(a2)"}" (2.33)

The ideal gas equation of state is still given by (2.16).

In the Navier-Stokes equations, Stokes' hypothesis, A + (2/3)g = 0, is used

for bulk viscosity. Also, 7 is taken as 1.4 and Pr is taken as 0.72. Sutherland's

law for molecular viscosity,

_'-_= \_--2=/ \ e+z /
(2.34)

is employed, with T_ = 460°R and _ = Sutherland's constant = 198.6°R.

2.2 Traveling-Wave Form of the Euler Equations

Many numerical methods for the Euler equations, including those discussed

in Chapters 4 and 5, are based upon the knowledge that certain types of waves

are emitted when two fluid parcels at different states interact. The directions

and strengths of these waves define the way in which information is propagated

through the domain.

In the upwind-differencing method, care is taken that numerical information is

propagated similarly. It is therefore instructive to look at traveling-wave solutions
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to the Euler equations. Upwind-differencing also applies to the convective and

pressure terms of the Navier-Stokes equations. The viscous terms of the Navier-

Stokes equations are always centrally-differenced.

The Euler equations are the same as the Navier-Stokes equations (2.1), (2.10),

or (2.22), except that the viscous terms Fv and Gv (or F* and G,_) are taken as

zero. Starting with equation (2.10), the nondimensional Euler equations in two

dimensions are written as

0U OF 0G

o-5-+ _ + ov o, (2.35/

where U is given by (2.11) and F and G are given by (2.12). These equations can

also be written in quasilinear form:

OW A 0W B OW =
0-"_" + _ + Oy O, (2.36)

where W is the vector of primitive variables, W = [p,u,v,p] T, and A and B are

the matrices

Ii o o1A= u 0 1/p (2.37)
0oo]

pa 2 0

[i IvB = v 0 (2.38)
0 v lip "

0 pa 2

Traveling-wave solutions to (2.36) are of the form

w(.,u, t) = W(.cose + ysine- at), (2.39)

where $ is the angle that defines the direction of wave propagation. Insertion of

(2.39) into (2.36) results in the eigenvalue problem

(Acos8 + BsinS)6W = )_gW, (2.40)



13

where _W is the amplitude of the traveling wave. The four eigenvalues and

corresponding right eigenvectors yielded by (2.40) are:

At = ucos0 + vsin0 + a

A2 = ucosO + vsinO - a

Aa = ucos0 + vsin0

(2.4i)

A4 = ucos0 + vsin0

[ ITa a 2
P1 = 1,-cosO, sinO, ap

_-a cosO, --- sin0, a 2
P2= 1, P P (2.42)

a a

Pa = O,--sinO,-cosO, O
P P

P4 = [I,O, O, O]T .

These eigenvectors represent: (1) an acoustic disturbance that propagates with

speed A1, (2) an acoustic disturbance that propagates with speed A2, (3) a shear

wave, and (4) an entropy wave. The latter two waves travel with speed Aa = A4,

the projection of the fluid velocity in the direction of wave propagation. Together

the four eigenvectors form the matrix P.

The characteristic variables for the quasilinear form of the Euler equations

can be computed from

gW* = P-i_fw, (2.43)

where

This gives

_W* =

2a 2a 2a 2

ms@ _ _f__._ i
-- 2a 2a

_ _im!__ _ 0
0, 12

0 0 -_

sinO6u + _cosO_v

8p -

(2.44)

(2.45)



14

Rewriting the Euler equations in terms of the characteristic variables yields

0W* 0W* 0W"

0--_ + P-xAP 0---7 + P-1BP OV - O. (2.46)

In general, A and B do not commute, so a single 8 that simultaneously diag-

onalizes both matrices cannot be found. This is indicative of the fact that in

multidimensional flow the waves propagate in infinitely many directions. As nu-

merical schemes are limited to modeling the flow with a finite number of waves, the

choice of wave type and direction of propagation is not trivial. The more "physi-

cally relevant" the wave types and directions of propagation are, the more likely

the model will be able to resolve a wide variety of flow features accurately. As

will be discussed in Chapter 4, grid-aligned wave models choose the grid-normal

direction as the direction of wave propagation. The grid-independent model de-

rived in Chapter 5 allows waves to travel in directions dictated by the physics of

the local flow field.



CHAPTER 3

SPATIAL AND TEMPORAL DISCRETIZATION

3.1 Finite Volume Formulation

The Navier-Stokes equations are cast in finite-volume form, which is a dis-

cretization of the integral form of the equations. Equation (2.22) is integrated

over a computational cell of area A:

dA+ {(F* - F_,)_ + (G* - G_,),7} = 0. (3.1)

The second integral is converted to a line integral over the boundary S of the cell

using Gauss' Theorem,

dA+ {(F* - F_,)dr/- (G* - G_.)d_} = 0. (3.2)

The first integral can be interpreted as the rate of change of the vector of averaged

conserved quantities (2.23) within each cell. The factor 1/J can be taken outside

of the time derivative when the computational grid is fixed with respect to time.

The line integral is discretized over the four faces of each cell; in the present

formulation it is assumed that each cell is a quadrilateral. The final result is the

finite-volume form of the Navier'Stokes equations:

I @Ui d _ (6_F* + 6.G*)ij + (6_F_,+ 6.G*)i d

JOt (3.3)

= Sij,

15
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where the right-hand side residual term S is made up of an inviscid and a viscous

part: S = Si + S,,, and

= - (3.4)
= -

The terms (F*)i+l/2,j and (G*)_,j+z/2 represent the inviscid fluxes normal to the

cell faces. These fluxes are evaluated at the cell faces through the use of a flux

function, which is the primary concern of the present study. A grid-aligned flux

function is discussed in Chapter 4, and a grid-independent flux function is derived

and discussed in Chapter 5. The second parenthetical expression in (3.3) consists

of viscous fluxes at the cell faces, which are determined via central differencing.

The following relationships exist between the Jacobian J, the metric deriva-

tives, and the cell areas and cell face lengths in the finite-volume formulation:

1/J = Cell area A

_i/(JAs_) = i component (i = x or y) of unit normal to _=constant cell face

of length As_

71_/(JAs,7) = i component (i = z or y) of unit normal to ,/=constant cell face

of length As, 7.

Using these relations, it is sometimes convenient to write (3.3) in a different form:

(I)v =

Pq_

pqgu + pcos0g

pqgv + psin6g

pqgH

0

vllcosSg + rz2sinSa

v21cosSg + v22sinSg

(3.6)

, (3.7)
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where 8g is the angle that the outward-pointing cell face normal makes with the

x-axis, and % is the outward velocity normal to the cell face, given by

% = ucosSg + vsinSg. (3.s)

Furthermore, _lAsl is the inviscid normal flux at cell face l, evaluated through

the use of a flux function. The term (¢I',,)lAsl is the viscous normal flux at cell

face _, evaluated using central differencing.

3.2 Explicit Time-Marching

The solution for the vector of averaged conserved variables can be advanced

explicitly in time using an m-stage time-stepping scheme. Using the definition of

S from (3.3), the scheme is:

U (1) = U ('_) + rh JArS(n)

U (2)= U (,_)+ _/2JAtS(1)

(3.9)

U ('n-l)= U ('_)+ _7,__iJAtS('_-2)

U (_+1) = U (r_).._JAtS('_-I),

where the superscriptn denotes the current time leveland n-b I denotes the next

time level. The superscripts 1,2,...,m- 1 denote intermediate time levelsor

stages. The coefficientsrh, r/2,...,r/,n-Iare chosen to give desirable damping

and stabilityproperties for the scheme. When m = I the scheme reduces to the

one-step forward-Euler time-stepping scheme

U (n+l) = U ('*) +JAtS ('_). (3.10)
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The solution can also be advanced implicitly in time. Starting with (3.3), the

left-hand side is discretized to first-order in time and the right-hand side terms

are taken at time level n + 1:

1 A,u(-) _ -(6_F* + 6.G*) ("+1) + (6_F; + 6.G;) ('+1)
J At

(3.11)

where AtU ('_) = U ('_+l) - U ('_). The right-hand side terms are linearized about

time leveI n:

F*("+I) : F*(,_) + tF: AtU ('_)
ou

0G*
G,C,,+1) = G*(,_) + --===-_AtU(")

0U

(3.12)

OF: _. OF: .1F;("+_)= F;(")+ -5-ff(_ + -5-ff(,_ _,U(")

* aG,:oG_ _ -SU-(_)_ A,u(-)G*('_+ 1)=G(')+ -_---( )+

(3.13)

Notice that in (3.13) the viscous matrix Jacobian terms are split in two parts: a

matrix with derivatives that are a function of _ only and a matrix with derivatives

a function of 7/only.

The spatial cross-derivative terms 6_[F*]u(7/) and 6,_[G_,]u(() are treated

explicitly, lagged in time, while 6e[F*]u(() and 6n[G*]u(T/) as well as the inviscid

matrix Jacobian terms are treated implicitly. Equation (3.11) becomes:

[ I [OF* cOF* )_ /cOG* cOG* )]7Ei + 6_\ ou ov (() + _-"I,,-0ff ov (_) _,u(")

= - (6_(F* - F*) + 6,_(G" - G*))

(aF:, aG; )+ _-6-_-(,7)+ _.--6-ffff) _,u¢"-')

--_--T.

(3.14)
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The equations are approximately factored and solved for AtU ('_) in two sweeps

_'_ +_ 0U v0F_,

[1 (0o.0o ,] I- --AtU' '

(3.15)

where the term AtU' is an intermediate result. The conserved variables then are

updated at the cell centers using

U (n-4-1) = U (rt) __ AtU(rt) . (3.18)

The implicit spatial derivatives of the convective and pressure terms are spatially

first-order accurate, resulting in block tridiagonal inversions for each sweep. For

example, the left-hand side of the first sweep in (3.15) is a block banded matrix

with the following structure for the ith row:

[..., 0,-A,+__,(A,++_- A;__+i/(J_t)),A?+_,0,...], (3.17)

1
where A++1/2 represents the portion of (cqF*/0U - v0F*/cqU(_)) at cell face i +

contributed from the left (the ith cell), and A[+I/2 represents the portion con-

tributed from the right (the (i + 1)st cell). Each of these terms can be divided

into inviscid and viscous parts:

()+A++_= Ai i+½ + Av i+½
(3.1s)

Since the viscous terms are centrally differenced, the viscous Jacobians are given

by

( )- I(0F_, )av _+_= 7 -g-6-(_) _+1"

(3._9)
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However, using the flux functions discussed in Chapters 4 and 5, it is very diffi-

cult and computationally tedious to obtain exact expressions for the inviscid flux

Jacobians. Instead the following approximations are used:

()*'_,+_ _0r j, 0u ,+_
(3.20)

The second terms within the braces are Roe-averaged terms at the interfaces,

equal to

Bi J+½ =_ \OU j

= ,,o,,j,+,

0¢*
j+½}

- 0u I.,}
(3.22)

The appropriateness of using (3.20) and (3.22) for the left-hand side inviscid Ja-

cobians when the grid-independent model is employed on the right-hand side is

discussed within the context of stability in Chapter 6.

where 1% and A are defined in Chapter 4, along with the Roe-averaged (hatted)

variables.

The left-hand side of the second sweep of (3.15) is of similar form to (3.17).

However, the A's are replaced by B's, which are functions of derivatives of G*

and G_,. The approximate inviscid Jacobians for the second sweep are given by



CHAPTER4

GRID-ALIGNED FLUX FUNCTION

Most flux computations have two distinct stages: a projection stage and an

evolution stage. In the projection stage of a finite-volume scheme, left and right

states are obtained at interfaces via interpolation along grid lines from surrounding

cell-center values. For first-order spatial differencing, the state variables (normally

the primitive variables) are extrapolated to a cell face k -4- 1 (where k represents

the grid index i or j of a structured 2-D grid) using

WL = W_
(4.1)

Wit = Wk+l.

For higher-order spatial differencing,

1

wL = w_ + _[(1 - _)__ + (1 + _)_+]_
(4.2)

1

Wit = Wk+ 1 -- _[(1 - I¢)_+ + (1 + tg)A-]k+l,

where
(A+)k = Wk+l - Wk

(4.3)

(_-)k = Wk - Wk-_.

When _ = -1, (4.2) gives second-order fully upwind spatial differencing, while

= 1/3 gives third-order upwind-biased differencing. Limiting of higher-order

terms can be employed at this stage of the grid-aligned flux function in order to

eliminate numerically-induced oscillations near regions of high gradient such as

shock waves.

21
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In the evolution stage of the flux computation, the flux at the interface is

computed as a function of the left and right states obtained from (4.1) or (4.2).

As discussed in the introduction, in a Godunov-type solver this stage numerically

models the physical process defined by the one-dimensional Riemann problem.

This process is illustrated in figure 4.1. At time zero, a membrane separating the

left and right states ruptures, and a shock wave, a contact discontinuity, and an

expansion fan propagate into either side, with strengths and velocities depending

upon the initial conditions. The flux at the interface can be determined when

these strengths and velocities are known.

The grid-aligned solver of Roe [4] is an approximate Riemann solver, in which

the ELder equations are linearized about an average state and solved exactly. When

used in a two-dimensional scheme the eigenvectors of the matrix in the linearized

system of equations, representing acoustic, shear, and entropy waves, are assumed

to propagate in a direction normal to the grid interface.

The grid-aligned flux function of Roe, representing the inviscid flux • (3.6) in

the two-dimensional ELder equations or Navier-Stokes equations, is given below.

The flux at a face is computed using any one of the following three equations (all

three are equivalent):

A<o

_>0

4

1 ('_I, + '_R) - I

k----I

(4.4)

The last equation can be interpreted as a central difference term plus a dissipation
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term. The eigenvectorsare given by

I_ = [1,fi + hcost;g,0+ hsint_g,/7+ hqg]T

1_ 2 = [1,_i - &cosSg,_ - &sinOg, f-_r - &_g]T

t_3 = [0, -Ssin0g, _cos0g, a÷g] T (4.5)

1 A2 _2
R4= [1,_,_,_(u + )iT

for the equations written in conserved-variable form. These eigenvectors corre-

spond to the eigenvectors Pk given by (2.42) for the equations written in primitive-

variable form, and represent, respectively, +acoustic, -acoustic, shear, and en-

tropy waves. The kth wave of this system has a strength _k, evaluated as the kth

component of the vector _:

where A(.) = (')R - (')L and

The wavespeeds are

1_!_
2_ (AP + #aAqg)

(Ap - #aAqg )

}#a,_
1 (a2ap av)_-

qg = ucosOg + vsinOg

r e = -usinOg + vcosOg.

A1= qg +a

i_ = _g - a

_, = 6.

, (4.6)

The Roe-averaged values (denoted by hats) are defined as

"_ = ULW + un(1 - w)

= VLW + vn(1 - w)

/I = HL_ + HR(1 - w)

a= (3'-I) /:/-_(a2+62) ,

(4.7)

(4.8)

(4.9)
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where w = v/_'/(v/'_" + v/'f_). The values qa and ÷g in (4.5) and (4.8) are given

by (4.7) with Roe-averaged values fi and _3replacing u and v.

The wavestrengths _k given in (4.6) result from satisfying the equation

4

Au = - = Z (4.1o)
k=l

In other words, the sum of the eigenvectors times their corresponding strengths

describes the difference in states across an interface. A geometric interpretation

of this will be given below. Since the Rk are eigenvectors of the matrix O,I'/OU,

the additional equality

4

A(_ = _11. - (_L = Z i_kRk (4.11)
k=l

is also satisfied. It can be seen from (4.4) that if all of the wavespeeds are positive

in the grid-normal direction, the flux computed at the interface will be the flux

from the left, 'I)r.. Conversely, if all the wavespeeds are negative, the flux will be

computed as q)R. In both cases this amounts to the upwind choice for g,.

The grid-aligned model can be interpreted in a geometric sense by looking at

the effects of the acoustic and shear waves in (Au, Av, Ap)-space. (The entropy

wave only causes a change in the density, so it is not representable in this space.)

Grid-aligned acoustic waves cause a change in velocity in the grid-normal direction,

along with a proportional change in the pressure and density according to the

+acoustic :

-acoustic :

relations:
8p 6u _v 8p

pa 2 acosOg asinSg p

6p bu 6v 6p

pa 2 acosO a asinOg p

(4.12)

These expresions can be derived easily from the acoustic wave eigenvectors P1 and

P2 in (2.42) with 0 taken as 0g. Figure 4.2(a) depicts the assumed propagation

direction of the -4- and - acoustic waves at an arbitrary grid interface, the normal
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expansio_n_
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// / .ocJ
R grid-normal

Figure 4.1: The Riemann Problem

-acoustic

+acoustic

_coustic l '_p

_a "_. II

ug - _ ,,_1

a) Direction of Propagation b) Effect in (Au, Av, Ap)-Space

Figure 4.2: Grid-Aligned Acoustic Waves
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of which makesan angle 0g with the z-axis, while figure 4.2(b) shows the effect of

each of the waves in (Au, Av, Ap)-space. The change in density Ap is not pictured.

In this second figure, the state at a given point in space changes by an amount

(Au, Av, Ap) as drawn by the heavy solid lines when a + or - acoustic wave

passes. The length of the lines in state space are representative of the strengths

of the waves.

The shear wave also propagates in the grid-normal direction, as shown in

figure 4.3(a). However, shear waves cause a change in velocity normal to the

direction in which they propagate, with no change in the pressure or density; this

is dictated by the relation:

6u 6v

shear : asinOg - acosOg " (4.13)

This expression can be derived from Pa in (2.42). Hence the velocity change across

a shear wave is in the direction shown in figure 4.3(b) in (Au, Av, Ap)-space, where

again the length of the line in this space is proportional to the strength of the

wave.

Given a left state L and a right state R. at an interface, the grid-aligned

flux function of Roe interprets the difference with a combination of +acoustic,

-acoustic, shear, and entropy waves such that (4.10) is satisfied. An example

is drawn in figure 4.4. L, the representation of the state to the left of the cell

face, is placed at the origin, and the right state R is located at (Au, Av, Ap),

as determined by the differences between L and R. All waves propagate in the

0g-direction, represented by the vertical plane in the figure. The effects of the two

acoustic waves and the shear wave are shown in the figure as heavy solid lines (the

entropy wave is not represented). The acoustic waves cause a change in velocity

in the #g-direction along with proportional changes in pressure, while the shear

wave causes a change in velocity normal to Og. Since this is a linearized model,
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Figure 4.4: Grid-Allgned Wave Decomposition
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the order in which the waves are taken is immaterial, and there is no difference

between shock-type and expansion-type acoustic waves.

A steady shock wave that is aligned with a mesh interface is interpreted

correctly by this model, as depicted in figure 4.5(a): the difference between the

states L and R is described essentially by a single acoustic wave. However, the

grid-aligned method smears a shock wave that lies oblique to the mesh. The

difference in states in this case cannot be described by a single acoustic wave

since the velocity-difference vector Va - VL is not in the 0g-direction. Hence the

model must introduce both a shear wave as well as an acoustic wave of the opposite

family to account for the discrepancy in A_?. These extra waves, depicted in figure

4.5(b), add dissipation which smears the numerical solution. The cone delineated

by the dashed lines in figure 4.5(b) is defined by the effects of all acoustic waves

of a given strength and arbitrary orientation, with one endstate at L. It is referred

to in Chapter 5 as the "acoustic cone."

The grid-aligned flux function can also misinterpret a pure shear wave that

lies oblique to a grid face. This situation is illustrated in figures 4.6(a) and (b).

In figure 4.6(a) left and right states are indicated on a (Au, Av, Ap)-diagram.

There is no pressure difference between L and R, and the velocity-difference vector

IYR - IYL is at some angle other than 90 ° to the 8g-direction (it would be normal

to the 0g-direction for the case of a shear wave aligned with the grid face, and

the wave model would intepret the difference with a single shear wave of the type

shown in figure 4.3(b)). The grid-aligned scheme now includes two acoustic waves

in its interpretation of the difference in states. These waves add dissipation which

smears the numerical solution. Additionally, if the wavespeeds associated with

each of these acoustic waves are of opposite sign, then the scheme computes a

flux at the interface with a pressure that is different from the correct pressure by

an amount Ap, as shown in figure 4.6(b). In this figure, a time history of the
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wave locations is drawn in relation to the grid-normal direction. The flux at the

interface is computed as either the left flux plus the change across left-running

waves or, equivalently, the right flux minus the change across the right-running

waves. In either case it can be seen that the incorrect pressure is given at the

interface.



CHAPTER 5

GRID-INDEPENDENT FLUX FUNCTION

The motivation behind the development of the present grid-independent ap-

proximate Pdemann solver is the desire to be able to recognize and appropriately

model both shock and shear waves regardless of their orientation with respect to

the grid. The method for accomplishing this goal is described in this chapter.

The projection stage of the flux computation is identical to that of the grid-

aligned method described in Chapter 4. In other words, primitive variables are

interpolated along grid lines using either (4.1) or (4.2). This stage is different

from that of many of the grid-independent methods under development by other

researchers, which assign values to faces via interpolation in some grid-independent

direction. However, since this latter type of interpolation can be very complicated

and costly, it was decided early in the development of the current scheme only to

use grid-aligned interpolation.

It is then the job of the flux function to make use of this information in an

intelligent fashion during the evolution stage of the flux computation. This is

accomplished in the following way:

(1) A primary direction of wave propagation is chosen that is more repre-

sentative of the physics of the local flowfield than the direction defined by the

grid.

(2) The difference in L and R states is represented with a combination of

32
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acoustic, shear, and entropy waves.

(3) A flux is formed in the grid-normal direction from the information prop-

agating in the physically-relevant grid-independent direction.

The next three sections of this chapter will describe in detail the methods

chosen to satisfy each of these three aspects.

5.1 Wave Propagation Direction

The primary wave propagation direction used at each interface is the velocity-

difference direction

defined from - _ to 2" This represents the angle that the velocity-difference vector,

AV, makes with the x-axis, as shown in figure 5.1 for two arbitrary states I_L and

17R. The 0a-direction is chosen because in this frame the velocity components VL

and vR normal to 0d are equal, as depicted in figure 5.2. Therefore the differences

between the two states can be interpreted either as a compression normal to 0d or a

shear aligned with 0d. In figure 5.3(a), the former interpretation is illustrated. The

velocity components tangential to the shock are equal (only the normal component

is affected by the shock). Also, the shock wave could be propagating with some

velocity _2s in the 0d-direction. The value of us is zero for a steady shock wave.

A shear-wave interpretation of the difference in velocities is illustrated in figure

5.3(b). Here, the shear wave propagates with velocity fL = fin in the (0d + 2)-

direction. This propagation velocity is zero for a steady shear wave.

Other choices for the dominant wave-propagation direction, as used by other

researchers (e.g. [24]) for grid-independent models include the pressure-gradient

direction and the flow direction. The first of these is not used in the present
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Figure 5.1: Velocity-Difference Vector
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investigation because its calculation requires data from surrounding cell centers,

and not just the left and right states interpolated along grid lines. The flow

direction is not used because it is not normal to a shock that lies oblique to the

flow. Hence the resolution is not as crisp as with the use of the velocity-difference

direction.

5.2 Wave Decomposition

Since there are two interpretations (figures 5.3(a) and (b)) of a velocity dif-

ference in terms of a dominant wave, it necessary that the method be able to

model both types of waves as well as have some way of determining which is a

better description of the true situation. The present method models both types

by describing the difference in states by a combination of two acoustic waves and

an entropy wave propagating in the /?a-direction, and an additional shear wave

propagating in the (0_ + 3)-direction. This shear wave causes a change in velocity

parallel to 0a with no change in pressure, thus allowing for sharp capturing of

oblique shear waves of the type depicted in figure 5.3(b). The propagation and

effect of this (84 + 3) shear wave is shown in figures 5.4(a) and (b). The propa-

gation and effect of the + and -8a acoustic waves is shown in figures 5.5(a) and

(b) for comparison.

The representation in primitive-variable form of the (Of + 3) shear wave is

'/V.Ps in (2.42) with 0 = O_ + ¥.

P(o_+n/2)ahear =

0

-_sin (0a + _)

 cos + 3)
0

0

-_cos0n

= -_sinOd
0

(5.2)

The two acoustic waves and the entropy wave are represented by Pa, P2, and P4

in (2.42), with 0 = Od.
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The strengths of the four waves must satisfy

or, equivalently,

Aw = _ nd'_,
k=l

(5.3)

4

AU = E _lkl_k, (5.4)
k=l

where the l?i.k represent the waves for the conserved-variable form of the equations:

R1 = [1, fi + &cosOa, fi + &sinO_,/I + aqd] T

1_2 = [1, _ - hcosOd, 6 - &sinO:t, /-/ -- aO_ ] T

_ = [0,-acosO_,-asine_,-a@T (5.5)

_, = [:,_,6,1(9, + _,)]T.

The hatted variables are still Roe-averaged variables defined by (4.9), and _t =

_cos0tt + 6sin0d. Unlike in the grid-aligned method described in Chapter 4, there

is not a unique combination of these four waves that satisfies (5.4). Although the

entropy wave always has a strength of

1 (a'Ap- Ap), (5.6)

(the same as _4 in (4.6) for the grid-aligned model), there is some freedom in

picking the strengths of the other three waves. This reflects, as mentioned earlier,

that there are two types of dominant waves, represented by figures 5.3(a) and

5.3(b), that could describe the difference in states. The model must choose which

type is more likely to be representative of the true situation, and allow that type

of wave to dominate in the numerical representation.

Two methods that allow the model to choose the "correct" wave type are

described here. Both are a function of the pressure difference across the interface:

if a Iarge pressure difference exists, it is more likely that an acoustic wave is
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primarily responsible for the difference in states. Similarly, a small difference in

pressure indicates that a shear wave more likely is the primary wave.

The first method is termed the minimum-pathlength model, and is imple-

mented by choosing the combination of waves such that the pathlength in (Au,

Av, Ap)-space is minimized. This minimum-pathlength model is accomplished by

using either two acoustic waves and an entropy wave or one acoustic, a ($a + 2)

shear, and an entropy wave. (Recall that the entropy wave is not representable

in (Au, Av, Ap)-space.) The choice depends on the location in phase space of the

right state R relative to the cone defined by all acoustic waves emanating from

L. By definition, R lies in the $a-plane. If R resides inside the "acoustic cone,"

as is the case with R1 in figure 5.6, then two acoustic waves describe the shortest

path. If R resides outside the cone, as represented by R2 in the figure, then one

acoustic and a (Sa + _) shear wave describe the shortest path. The mathematical

conditions for R inside or outside the acoustic cone are:

Inside: (Ap) 2 > [_a(Aucos6a + Avsin0,_)] 2 (5.7)

Outside: (Ap) 2 < [_a(Aucostg_ + Avsinga)] 2. (5.8)

The rninimum-pathlength model always uses three waves out of a choice of four

possible wave types to describe the difference in states.

A second strategy is to choose the strengths of the acoustic and shear waves

such that the path is in some sense closest to the straight hne connecting L and R

in phase space. More specifically, the area between the waves (taken in a certain

order) and the direct path L-R is minimized. This minimum-area model is due

to Parpia [27]. A geometric representation is given in figure 5.7, where again the

entropy wave, although present, is not pictured. If R lies inside the acoustic cone,

like R1 in the figure, then the path that minimizes the area (shaded region) is

accomplished by two acoustic waves. If R lies outside the cone, as represented by



4O

Ap

L

(Od + _) shear

R2

acousti(
A_

Figure 5.6: Minimum-Pathlength Model Wave Decomposition (Entropy

Wave Not Pictured)



41

Ap

.s
I

\

X
\

\
\

\

\

\

\

\

-Oa acoustic

+Od acoustic

acoustic cone

Oa + _ ) shear
R2

Oa-plane

Oa acoustic Av

Figure 5.7: Minimum-Area Model Wave Decomposition (Entropy Wave

Not Pictured)



42

R2, then some combination of two acoustic waves and a (0a + _) shear wave gives

the minimum area. The exact expression will be given in the next section and is

derived in Appendix A. The minimum-area model uses either three or four waves

to describe the difference in states at each interface.

Numerical experiments show that both these models can produce nonlinear

feedback that results in oscillatory flowfields. Small changes in the computed

values of 0a feed back into the solution, producing further changes in 0a. An

example of this is given in figures 5.8(a) and (b). This is an Euler computation

of supersonic flow over an airfoil, to be discussed in greater detail in Chapter 8.

Figure 5.8(a) shows pressure contours over the airfoil using the grid-independent

model 500 iterations after a restart from a converged solution with the grid-aligned

scheme. Velocity vectors showing the 0a-directions or/ the _-faces for the last

iteration are given in figure 5.8(b). These directions are very oscillatory, causing

the unrealistic behavior seen in the first figure. In spite of the wild oscillations in

the flowfield, this solution converges.

An easy way to inhibit this feedback is to freeze the computed values of 0a

at each face at some point in the computation, calling these 0_. The four wave

vectors in (5.5) remain the same, only with 0_ replacing 0d. Since the state R

does not necessarily Lie in the 0_-plane, at least one additional wave is needed to

describe the differences between the left and right states at each face. A shear

wave propagating in the 6_-direction produces a change in velocity normal to 6_,

and can therefore be used as the additional wave. It is represented by

15,.s = [0,-asinO_, acos6_, 5(-asinO_t + lgcosO_t)] r . (5.9)

A sketch of this wave is included along with the other four waves using the

minimum-area model in a (Au, Av, Ap)-space diagram in figure 5.9. When the

projection of the right state onto the 8_-plane lies within the acoustic cone, then
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the waves are chosen as shown in the figure for right state Rt with projection onto

the 0_-plane R_. The second case, for which the projection of the right state lies

outside the acoustic cone, is shown for right state R2 with projection onto the

0_-plane R_; the wave decomposition in the 0_-pla.ne follows the minimum-area

rule.

The same airfoil computation is shown in figures 5.10(a) and (b), where the

0d angles are now computed during the first iteration of restart from a converged

grid-aligned solution, then frozen for the remainder of the computation. Results

are now relatively free from oscillations.

It should be noted at this point that a first-order interpolation procedure is

used to obtain the left and right velocity values employed in equation (5.1) for 0d

even when the overall computation is second-order accurate. This is done since

first-order interpolation yields smoother variations in 0d throughout the compu-

tational domain, giving generally better solution quality. As a consequence, in a

second-order computation the left and right states L and R obtained via second-

order interpolation do not necessarily lie in the 0d-plane, and the fifth shear wave

ks described here is necessary even when the wave propagation directions are not

frozen.

5.3 Flux Formulation

5.3.1 Standard Formula

The combination of the four waves from (5.5) (with 0_ taken as 0_) plus

the 0_ shear wave (5.9) results in a 5-wave model, which generates a family of

flux formulas with a free parameter/3. This family includes both the minimum-
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pathlength and minimum-area models discussed above. The flux per unit face-

length normal to each grid face is calculated using

5
1 1

,I, = _ ('I_L + 411.)- _ E Ak l_kl_k, (5.10)
k=l

where the five waves are given by

ftl = [1,_ + acos0_,_ + asin0_,//+ a0_]T

^ • t ^ ^^t T
15,.2 = [1,_i -- acosS_,_) -- asmSd, H - aqd ]

R3 = [0,-acos0_,-asin0_,-a4_] T

1_., = [1,_,_, _(a 2 + 62)] T

(5.11)

These represent, respectively: +O_ acoustic,-8_ acoastic, (8_ + _) shear, 0_

entropy, and 0_ shear waves. Also,

^' ^ ' "_sin0_qd = uc°sOa +

÷_ = -asin0_ + 6cos0_.
(5.12)

The wavestrengths are defined as

_., -/3_ (aucosO_,+ a,,sinO:,)

(/3- 1)_ (aucosO:,+ ,sv_ino:,)
(a'ap- Av)

(-A,_sin0:,+ A,,cos0:,)

The minimum-pathlength model is obtained when/3 is taken as

(5.13)

[I ap/(_a) ] ]/3 = rain []AucosO_+ &vsinO_ ' 1 . (5.14)

In this case, the 5-wave model uses only four waves at a time since either the

(0_ + _) shear wavestrength or one of the acoustic wavestrengths is identically

zero. The minimum-area model results when

= rain Aucos0_ + Avsin0_ ,1 , (5.15)
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and the 5-wave model uses allfivewaves when R llesoutside the acoustic cone,

and four waves when R liesinsidethe acoustic cone (the (_ + 2) shear strength

is zero). These two expressions are derived in Appendix A. In practice,a small

number e (= 1 × 10 -s) is added to the denominators in (5.14) and (5.15) to avoid

division by zero in regions of null gradient. Also,/3 is generally limited to be no

less than 0.05, and is frozen along with 0_ as an aid to convergence.

Numerical experiments indicate that both the minimum-pathlength and the

minimum-area models give very similar results, although the minimum-area model

tends to be slightly more dissipative for a wider range of test cases. Hence,

it exhibits less oscillatory behavior and usually converges slightly faster. The

minimum-area model is used for all the computations in Chapters 8 and 10.

The wavespeed associated with each of the waves in (5.11) is the component

of the average flowspeed in the direction of wave propagation, plus or minus the

average speed of sound for the acoustic waves. Since the flux (5.10) is in the

grid-normal direction, however, it is necessary to take the components of these

wavespeeds in the 0g-direction. They are:

k3 _ ^l • I

),,= - 0g)

(5.10)

Notice that this 5-wave model reduces to the grid-aligned approximate Riemann

solver when #_ = #g and _ = 1 (i.e. the (#_ + _) shear-strength vanishes).
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Since the 5-wave model's wave vectors l_.k = l_k(O_) are not the eigenvectors

of the matrix c9_,/c9U unless O_ = Og and/3 = 1, it is generally not possible to

satisfy equation (4.11), i.e.,

5

(5.17)

for determining the flux. A general form for the flux function is

(5.18)

with (0 <: 6 < 1). This expression reduces to formula (5.10) for 6 = 0.5, but

gives different results for _ using different 6 since the expressions in brackets are

not equal in value. This is in contrast to the grid-aligned wave model described

in Chapter 4, for which (5.18) would give identical _I' for all 6, as a result of the

validity of equation (4.11).

For example, if all _'s at a particular grid face are positive and 6 = 1, the

flux formula yields _L, the flux of the state on the "left" of the face. In the

grid-aligned method this would be the correct answer. If the waves are traveling

obliquely to the grid direction, however, this is not the answer produced by the

standard formula (5.10). It may be argued that equation (5.10) is the correct

formula because of its symmetry - it favors neither input state since it corresponds

with 6 = 0.5 in (5.18) - but this is not always entirely clear. Hence it is difficult

to say what value of 6, if any, is appropriate in (5.18) for the grid-independent

model.

In order to gain further insight, it is instructive to look at a slightly different

formulation of the model. In this method, as before, the first step is to determine

_=1

Some question naturally arises, then, as to the appropriateness of equation (5.10)
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8d via equation (5.1), and the second step is to use the five waves (5.11) to describe

the difference in states. The third step, the determination of the flux normal to

the cell face, is performed in a different manner, however. The strengths and

orientations of the five waves are used to define/our new s_a_es, as shown in figure

5.11, which lie to the left and right of the face in the 0_ and (0_ 4- _)-dlrections.

Two Roe-type approximate l_iemann solvers are then used, one in each direction

(0_ and 0_ 4- {), and the resulting fluxes are combined to give a flux on the grid

face via:

• = O0 cos(0 - 0g)- oo + /2sin(0 - 0g) (5.19)

This method is hereinafter referred to as the state-determined model.

The state-determined model is similar to that of Levy [24] and Dadone and

Grossman [26]. However, they use information from the surrounding flowfield to

obtain the four states; the present method uses only the left and right states L

and R, and applies the information in the acoustic, shear, and entropy waves to

determine local gradients.

U' U"The four states UL _, R. , UL", and R. of figure 5.11 are determined as

follows. First, assume that cos(0-0g) > 0 and sin(0-00) > 0. Results are similar

for other cases. Second, assume for simplicity that 0a is not frozen, i.e. O'a = 6._,

and that the difference in states is described by the minimum-patklength model.

Although the left and right states are interpolated to be at the same location on

either side of a cell face, an arbitrary finite distance is assumed to separate them

as shown in the figure. The states UL' and UR' are found on the wave fronts

through L and R of the 0d waves, while UL" and UR" lie on the fronts through

L and lZ of the (6d + {) wave. These fronts form a rectangle; the states are

assumed to be in the midpoints of the rectangle's sides. Furthermore, the waves

that describe the difference in states are assumed to bridge this difference in a



51

linear fashion. Thus, the 0_ waves have half of their full effect on UL" and Urt",

and the (8_ + 7) wave has half of its effect on UL' and UR'.

If equation (5.7) is true, then the difference in states is described by two

acoustic waves and an entropy wave, all acting in the 0d-direction. Hence UL' -----

UL, UR' = UR, and

^ A

UL"= UR": UL + _ _ n_P,._,. (5.20)
k=1,2,4

Alternatively, if equation (5.8) is true, then one acoustic and an entropy wave

in the 0d-direction and a shear wave in the (gd + _)-direction are used. In this

case, the formulas are:

UL + 2h, R_ (5.21)UL' ---

u_' = ur + h_o,2fi._o,_+ _41i4+ _n,l% (5.22)

UL"= UL + _ hlor,_l.lo,_ + _4B-, + _sRs (5.23)

1 (nlo, ,15,.I + _415,.4) (5.24)UR" = UL + _ or2 •

The subscripts (1 or2) indicate that the acoustic wave 1_1 or 15,.2is used, depending

upon which minimizes the pathlength in (Au, Av, Ap)-space. Roe-averaged values

are determined once at each face from states L and R, then used in each of the

Riemann-solvers.

The state-determined model is naturally fairly expensive, requiring about six

times as much CPU time as the grid-aligned method to compute the fluxes at the

faces. It can be shown that the flux based on this state-determined model is not

the same as the flux (5.18), regardless of the value of g. However, it has been

determined numerically that the difference between the two methods is always a

minimum in the mass flux when _ = 0.5. Also, if the jump between the left and

right states is relatively small, then the difference between the two methods in the
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Figure 5.11: Graphical Representationof State-Determined Model
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other three equationsis alsousually a minimum near g = 0.5. For example, figure

5.12(a) shows the absolute value of the difference between the fluxes determined

by the two methods as a function of 6, where the leK-state primitive variables

(p,u,v,p) are (1,2,3,4), and the right-state variables are (2,3,4,10). 8g is taken

as 0 °. These particular states have a relatively large pressure difference, so two

acoustics and an entropy wave are used to describe the difference in states. A

second example is given for left and right states of (1,1,1,1) and (1,2,1,1) with 0g

taken as 45 ° in figure 5.12(b). In this case, the difference in states is only in the

velocity, and one acoustic, one shear, and one entropy wave are used to model the

difference.

Hence, equation (5.18) with 6 = 0.5 is, in a sense, "best" for this particular

form of the flux function in that it generally yields a flux very close to that given by

the state-determined model. In fact, in practice the flowfields produced by the two

methods are often virtually identical. Results in the remainder of the paper are

therefore obtained solely with the standard formula for the 5-wave model (5.10)

(which is the same as (5.18) with 6 = 0.5), since its expense is significantly lower

than that of the state-determined model.

5.4 Recovering the Grid-Aligned Scheme

One unresolved issue facing the 5-wave model is the fact that the model does

not reduce to the standard grid-aligned model when 0_ = 0g if _ # 1. In other

words, if the (0_ + 4) shear wave has any strength other than zero, the standard

grid-aligned flux is not obtained when the waves are assumed to travel in the

grid-normal direction. Intuitively, it seems that this flux should be obtained. For

example, if all wave speeds are positive and act in the 0g-direction, then it seems
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desirable that the grid-aligned upwind flux _L should be computed as the flux

at the interface. But unless/3 -- 1 (along with 0_ = 09) , the inequality in (5.17)

holds and the flux function (5.10) does not yield q'L as a result.

Also, it is dimcult to imagine a steady-state circumstance when 0_ = 0g and

a (0_ + _) shear wave exists between the states. As an example, two pictures

are drawn in figure 5.13 of neighboring cells with a velocity-difference direction

that coincides with the grid-normal direction. In figure 5.13(a) a relatively large

pressure difference exists between the states, and a 0_ acoustic wave is presumed

by the model to describe the difference. In figure 5.13(b), no pressure difference

t

exists, and the model describes the difference with a (8 d + _) shear wave. However,

this shear wave is aligned such that it passes exactly through each cell center.

Even if these are assumed to lle infinitely close to either side of the wave, this is

an unlikely situation. This interpretation also is obviously inconsistent with the

notion that the data in each cell represent cell averages, for with this shear-wave

orientation the averages in the left and right cell should be identical.

Unfortunately, it is not clear how to recover the grid-aligned method auto-

matically when 0_ = Og, while still retaining the capability of resolving oblique

shear waves. Two different methods which have been attempted to resolve this

issue are described in this section. The first method involves making/3 a function

of the difference 01 - 0a. When 0_ = 09, the grid-aligned scheme must be recov-

ered, so/3 must be made equal to 1.0. This can be enforced by choosing a new/3*

as

/3* =/3 + 2(1 -/3) {cos [2(0_ - 0_)] + 1}, (5.25)

where/3 is computed using (5.14) or (5.15). The resulting/3", used in place of/3

in (5.13), varies smoothly between/3 and 1.0, depending on the difference between

0_ and 0g.
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There are two significant problems with this method. First of all, resolution

of pure oblique shear waves is reduced since fl* is near zero only within a narrow

range of angles (81 -8g). Hence most pure shear waves are now interpreted using

some acoustic waves as weli, resulting in added dissipation and smearing of the

numerical solution. The second problem arises in certain circumstances, and most

notably in the case of the computation of flow over an airfoil. Around the airfoil's

leading edge the grid-normal angles of a structured-grid vary rapidly through

about 180 °. Since the 81-directions do not vary as much (see figure 5.10(b)),

the /3* values resulting from (5.25) generally vary rapidly between /3 and 1.0.

This oscillatory behavior of/3* can cause unrealistic results with "kinks" and/or

oscillations in contours of fiowfield variables near the leading edge.

Example solutions using fl and/3* are given in figures 5.14(a) and (b). Shown

are pressure contours resulting from an Euler computation over a NACA 0012 air-

foil at M = 0.3, a = 1 °, on a 65 x 25 C-mesh. Figure 5.14(a) shows contours using

(without equation (5.25)). Results are fairly smooth, except for irregularities

due to grid coarseness. Results using fl*, shown in figure 5.14(b), shows _wo re-

gions of local maximum pressure at the nose and large "kinks" in the contours in

front of the nose. One effect of this irregular behavior is the nonconvergence of

lift to the correct value as the grid is refined.

Several variations in equation (5.25) have also been attempted, including

the use of functions which very rapidly transition from fl* -- 1 to fl* -= fl near

[81 - 891 = 0 and -4-_-, and remain flat at _/over much of the 81 - 8g range. This

allows for sharper resolution of most oblique shear waves_ but the second problem

relating to airfoil flow remains.

The second attempted method for recovering the grid-aligned scheme when

81 = 8g involves replacing the (#I + 7) shear wave with +8_ acoustic,-8_ acoustic,

and 8_ shear waves. The 8_ angle is a function of 01 and 0g: it is set equal to
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a) Using

Figure 5.14:

b) Using B"

Pressure Contours Near Leading Edge of NACA 0012 Airfoil,

M = 0.3, a = 1 °, 5-Wave Model
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O_ when O_ = Og, and is smoothly transitioned to e_ = e_ + { otherwise. Hence,

when 0_ = 8g the grid-aligned scheme is recovered, and when 0_ = 0_ + _ the

5-wave model is recovered. One way to accomplish the transition is to use the

relation

( _) (5.26)o_ = o_+ rmn 210_- OgJ,_

The strengths of the three new waves which replace the (01 + _) shear wave are

fi+o:,,,,_ I - _ _- _ _(,',,,cos0d+ ,',_sineS)(cose_,cose_+ sine_sinO_)

{l-e_,,_,c = -_l+e_,_,c (5.27)

_0_'.h.., = (/3 - 1)=_(AucosO_ + AvsinO'a)(cosO_sinO' d -- sinO_cosO_),

The corresponding components of the wavespeeds in the.grid-normal direction are

%+o_'A= = (TicosO_ + 6sinO_ + g)cos(O_ - O9)

)t_0_,,= = (acosO_ + _?sinS_ - ti)cos(O_ - 89) (5.28)

• _11\ 14111

_o_,',hear = (_cosO_ + vszn_g/coskt, a --89).

Aside from the obvious drawback that this model requires a total of seven waves

rather than five, it also (just as the method based on _*) gives very unrealistic

results near the leading edge of airfoils. By far the best solutions in general are

still obtained using the original 5-wave model, in spite of the fact that it does not

recover the grid-aligned method.



CHAPTER6

STABILITY ANALYSIS

The stability analyses of both explicit and implicit time-marching schemes

with the 5-wave model for the Euler equations are discussed in this chapter. Be-

cause of the complexity of the Navier-Stokes equations, it is much more difficult

to obtain expressions for its stability. However, it has been found empirically that

the stability condition for the Navier-Stokes equations for flows with relatively

high cell Reynolds numbers is usually only slightly more restrictive than the CFL

condition for the Euler equations [28].

6.1 Explicit Time-Marching

Writing the equations in the finite-volume form (3.5) with viscous terms ig-

nored, the stability analysis requires the eigenvalues of the Fourier transform of

the right-hand side of

At
0U At 4

0t - A _ Cease (6.1)
£=1

= JAtS_.

The right-hand side can be expanded using the i and j indices corresponding to

the _ and 7/ directions of a structured grid:

0U At

ot - A (6.2/

59
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The normal flux _ per unit face-length at eachof the faces is obtained with the

flux function described in Chapter 5:

(6.3)

where k represents the index i or j. The following operator symbols are introduced:

Ak+_(')- (')k+l-(-)_

_(')- (')_+1- (')k-x.
(6.4)

When equation (6.3) is inserted into (6.2) at the four faces, terms such as Ak+l/2_I )

and _(I) can arise (depending on the spatial order of accuracy). These terms are

linearized using

Ak+i'I'= _ Ak+½U

(6.5)

and all O_/OU and II_lterms are also linearized about the cell center using Roe-

averaged values (e.g. 161k+l/_= 1ISIk_a/__ 161).It is further assumed that all

cells are square with face length As. Linearized, equation (6.2) becomes

lID

At=--= = -LU, (6.6)
at

where, for first-order spatial differencing

1

2

1

+_
1

2

(9_, i --

I3(o_'))I(A,+_- A,_i)

]5(o_J))(%+_ - Aj_i) }.

(6.7)
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For second-order fully one-sided spatial differencing:

a_> , 3-
L

7 '+#+ - /

1 i3(0_i)) ( 1 3 3A. 1 )- -_A_+_ + 7A_+_ - 2 '-_ + 7A_-_

1 ( 1 3 _-._. 1
+7 .t-7 _j+_, + - )t,0U g '/ 2 J 7 Aj-#

(1 A 3 3 A IA. )}"_1 bro(s)) - _ + -- + __2 ' g 2 j+ 7 Aj+_ 2 J-_ 2 J

(6.8)

The 0 (i) and 0(j) are the directions normal to the grid faces in the i and j directions,

respectively. In the present analysis, 0_i) is prescribed, and 0(j ) is taken as 0_ i) +

7r/2.

For completeness, the matrix 0,I,/OU is given here: 0'_/0U =

o (c,)g (c,)g o(eu)g45-60g (e:)9?)-(cu)9(7-1)ii (%)g(2-7)6+qg (%)g(7 -I)

(6.9)

where C4i -- (cz)g(')'E--_) -- ('T-1)_iqg and C43 = (cu)g(')'E--_)-- (7--1)'Dqg. Also,

_b=7 -12 +

,is -- (_,),a + (_,,),e.
(s.lo)

The terms (c,)g and (%)g represent the components of the grid-face unit normal

in the z and y coordinate directions, respectively. In other words, (c.)g = cos0g

and (%)g = sin0u.

I1)1 is the matrix that satisfies

I) AU= Z A_I 1=1_' (6.11)
k

where the summation is over all the waves. For the 5-wave model, the elements
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where

Ibj2

Iblj3

If) J,

= '[i4 (ft,)_ + ¢¢1- _2_- ¢3_

= -(3" - 1)_¢1+ ¢2

= -(3, - 1)v¢1+ Ca

= (3'- 1)_i,

(6.12)

I15(,.,d_o._.._)I°_l= b-6 = ft h[ 1_-_,

symbols are:

(6.14)

whereas this is not true for the 5-wave model, since its l_.k are not the eigenvectors

of the O_/OU matrix.

In order to obtain the Fourier transform of the right-hand side of (6.6), the

Fourier symbols for the difference operators are inserted into the equation. These

._(A,+a) = e_2¢('_-- e_6'_

m(A,+¢) = e_6"_-- I

_(Ak__) = e-_d'__ e-_26'_

-- --e ,

(6.15)

in Chapter 4, the II_] matrix which satisfies (6.11) can be written as

_ 1 i_ -

-- _sin0dlisI(l_5) j (6.13)

1
+ _cos0,_ I_sl ("s),

and (l_i)i represents the jth element of the vector Ri, as denned in (_.n). The _,'s

are defined in (5.16). It should be noted that for the grid-aligned model described
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where k represents the index i or j, and _(i) and _(J) are the wavelengths of

the perturbations in the i and j directions, respectively. For first-order spatial

differencing (L defined by (6.7)), the Fourier transform of the right-hand side of

(6.6) is:

E_(-L) = -{_(0(,)) 4- _(O_J))} I_(0_')) (1 - cost(i))+

(6.16)
\OU' g '/

i( O_ (O(')))sin_ (')]\OU g

where the variable v is the CFL number, defined as

{ } A, (6.17)= ,,,(o(,'))+,,,(o(,J))

for square ceUs with face length As. Here, a2(gl i)) and _o(0_ j)) are the maximum

wave speeds Iql + & in each of the grid directions. H(-L) is a complex-valued 4 x 4

matrix.

For stability, the locus of the eigenvalues of the Fourier transform, often called

the "Fourier footprint," must lie inside the stability boundary of the time-marching

scheme. In general, the Fourier footprint of the 5-wave model is a function of v,

the Mach number M = _/u 2 + v2/a, the flow angle a = tan-l(v/u),fl, 0'd, and 0(i),

as well as the perturbation wavelengths _(i) and _(J). Since the Fourier footprint

is a function of so many variables, it is difficult to perform a thorough numerical

analysis. However, an extensive number of variations in the independent variables

have been tested. In each case _(i) and _(J) are both cycled through 17 values from

-Tr to _" inclusive, and four eigenvalues are obtained at each of the 289 conditions.

Based on the results obtained the following trends are noted:

(1) The relative magnitudes of the eigenvalues are strongly dependent on the

Mach number. In general, increasing M increases the magnitudes, but at larger

and larger M an asymptotic limit is reached.



64

(2) Many of the modes of the Fourier footprint can have eigenvalues that lie

on the imaginary axis. In particular, this occurs when a and 8_ differ by 90 °.

From this analysis, it is clear that the explicit forward-Euler time stepping

scheme would he unstable for many of the modes, since the stability boundary for

forward-Euler is a unit circle centered at (-1,0) and does not include any part of

the imaginary axis except the origin. However, 2-stage or higher schemes can be

designed that satisfy this requirement. For example, the 4-stage scheme

U (1) = U (_) + _/JAtSi (_)

= U ('_) + 1jAtSi(1)U(2)

(6.18)
1

U (3) = U ('_) + _JAtSl (2)

U('_+I) = U ('_)+ JAtSl (a)

has a stabilityregion including a finitepart of the imaginary axis whenever 77<

1 2 1 3 1 4
0.6756. Its amplification factorisgiven by P(z) = 1 + z + -_z + _z + "_TZ • The

stabilityboundary is defined by [P(z)[= 1.

An attempt was made to devise a "worst case" Fourier footprint for this

scheme by choosing independent variablesthat yield the largesteigenvalue extent

in the Real-Imaginary plane. Of allthe combinations of variables tested,the one

that gave the largest footprint was: M = 100, ct = 90 °,_ = 0, 8(0 = 0°, and

_ = 22.5°. Given thisfootprint,an 7}of about 0.15 is "optimum" for the 4-stage

scheme in the sense that it allows for the largest r,for stability.A plot of the

Fourier footprint at its maximum u = 1.75, along with the corresponding time

stepping stabilityboundary using _/= 0.15 is shown in figure 6.1. This exercise

was also performed for 2, 3, and 5-stage schemes. Although not shown, for these

cases the maximum CFL numbers for stabilityturn out to be u = 0.7, 1.2, and

1.9,respectively.Hence increasing the number of stages yieldsincreasing benefit

in stability,but the differencein maximum allowable CFL number between 4 and
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5 stagesis small relative to the extra work involved in computing the extra stage.

Therefore, in the present paper the 4-stage scheme is used for all explicit Euler

computations. Note that since the Fourier footprint is highly dependent on Mach

number, the maximum allowable v is actually higher than 1.75 for M lower than

100. For example, at M = 3 the maximum CFL number is about 2.2, while at M

= 1 it is about 2.5, according to this linearized stability analysis.

For second-order spatial differencing (L defined by (6.8)), the Fourier trans-

form of the right-hand side of (6.6) is:

\0U' g '1

A "worst-case" Fourier footprint is again accomplished using the same vari-

ables as for first order, only this time the maximum v turns out to be 0.87 for

the 4-stage scheme with r/= 0.15. A plot of the Fourier footprint along with the

stability boundary is given in figure 6.2. Again, at lower M the maximum CFL

number is less restrictive. For M = 3 the maximum v is about 1.3, while at M =

1 it is about 1.5.

6.2 Implicit Time-Marching

Ignoring the viscous terms, the implicit factored equation (3.15) can be writ-

ten as

\ ou /J A,U(")

= -JAt(6_F* + _.G*).

(6.20)
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Recall that the left-hand side Jacobian derivatives are written with first-order ac-

curacy, resulting in block tridiagonals for each coordinate-direction sweep. Spht-

ting the Jacobian derivatives into + and - parts and expanding the right-hand

side, (6.20) becomes

[I + JAt(t_/A + + 6+A_-)] [I + JAt(g_-B + + 6+B/-)] AtU ('_)

(6.21)
__ F _= -JAt(F_+_, (__,j + G_,_+i- G_,j_i),

where the first-order operators are defined as: 8+(.) = ('),+1 -('), and _-(.) -

(')k - (')k-l, and k represents the index i or j. Approximate inviscid Jacobians

are currently employed on the left-hand side for A_ and B_, as defined in (3.20)

and (3.22).

The fight-hand side of (6.21) is identical to the figh.t-hand side of the explicit

form (6.2), since _As on _-faces equals F*, q_As on _/-faces equals G*, and

J = 1/A. Hence, after linearizing the fight-hand side as described in the last

section, (6.21) can be written:

MAtU ('0 = -LU, (6.22)

where L is given by (6.7) or (6.8) and

M = [I+ Jat(_ia? + _,+A/-)][i + sAt(6;r7 + _?u?)]. (6.23)

The Fourier symbols for the first-order difference operators in (6.23) are

3(6_+) = e'¢_J- 1
(6.24)

_(6f) = 1 - e -_¢(').

Linearizing the Ai and Bi terms on the left-hand side of (6.22) about the cell

center using Roe-averaged values, then taking the Fourier transform of the whole

equation, the following expression for the amplification matrix g results:

{_(M)} (g - I) = _(-L), (6.25)
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where ._(-L) is given by (6.16) for first-order right-hand side spatial accuracy or

(6.19) for second-order, and 9(M) is the Fourier transform of M, given by

{ {w(O(gi)) +v w(O(J))} [[ 06 i= I + (1 -

\OU' o

(6.26)

Equation (6.25) can be rearranged to give the generalized eigenvalue problem:

[_(M) + ._(-L)] £ = g [_(M)] £,

where g is any of the complex eigenvalues, and [_(M) + _(-L)] and [-_(M)] are

complex 4 x 4 matrices.

The stability characteristics of the implicit equation are determined by cy-

cling through 17 of each of the frequencies _(i) and _(J) from 0 to 2_" inclusive.

(The combinations when both _(1) and _(J) equal either 0 or 27r are excluded since

they yield eigenvalues of 1.0 automatically for a consistent scheme.) The gen-

eralized eigenvalue problem is solved using a subroutine from the International

Mathematics and Statistics Library (IMSL). The maximum eigenvalue, the aver-

age eigenvalue, and the smoothing factor are determined as a function of the CFL

number v. The maximum eigenvalue serves as an indication of stability: its value

must remain at or below 1.0 for stability. The smoothing factor is the maximum

eigenvalue when max(((i), ((J)) lies between _r/2 and 3_r/2. It corresponds to the

damping of high frequencies, and serves as an indication of the possible effective-

ness of a multigrid method if it was applied to the scheme. The average eigenvalue

simply gives a measure of the mean of all the eigenvalues over the whole frequency

range.
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Again, the stability is a function of a large number of independent variables,

including the parameters v, M, a, _/, 0_, and O_i), so a thorough numerical analysis

is difficult. For first-order spatial accuracy, the "worst case" parameters of all the

variations tested were determined to be: M 100, a = 90 °, 0_ = 22.5*, 0 u = 0 °

and ;8 = 0 (although _ = 1 gives a similar result here). As can be seen in

figure 6.3 in a plot of the eigenvalue parameters as a function of CFL number,

the maximum v insuring stability is 2.5. For the different conditions of M=100,

a = 45 ° , 0_ = 45 ° , 09 = 0 °, and _ = 0, the scheme is stable only up to v = 0.05,

the lowest limit found, as shown in figure 6.4(a). However, at these conditions the

stability is a strong function of/J. When 13 = 0.05, the maximum v for stability

increases to 2.5, as shown in figure 6.4(b). Higher j_ give even larger maximum

allowable CFL numbers for these particular parameters. As was mentioned in

Chapter 5, fl is limited to be greater than 0.05 as an aid to convergence, as

determined empirically for solutions using explicit time-marching. Now it is clear

that this limiting is necessary from the standpoint of stability for implicit-time

marching as well.

All other variations in parameters that were tested give stability limits that

are either equally or less restrictive than those of figures 6.3 and 6.4. Hence, with

limited to be greater than 0.05, the CFL limit for the first-order implicit scheme

is about 2.5. As was true for explicit-time marching, the stability limit derived

here for M=100 is somewhat overrestrictive for flows at lower Mach numbers. In

practice, at reasonably low Mach numbers (less than about 3 or so) the stability

limit appears to be about u = 4.

When second-order spatial differencing on the right-hand side is employed,

the CFL limit for stability is more restrictive. Figure 6.5 shows the stability plot

for M = 100, a = 90 °, 0_ = 22.5 ° , Og = 0 °, and/3 = 0 (although/3 = 1 gives

a similar result here). The maximum v = 1.4 for stability for this case. For the
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conditions M=100, a = 45 °, 8_ = 45 °, 89 = 0 °, and/3 = 0, the scheme is stable

only up to the lowest limit of v = 0.01, as shown in figure 6.6(a). When/3 is

limited to be greater than 0.05, then the stability limit for this case increases to

about 0.3, as shown in figure 6.6(b). Hence, since other combinations of variables

tested give similar or better stability limits, the maximum v for stability for the

second-order implicit scheme is about 0.3. Again, at lower Mach numbers this

stability restriction can be relaxed somewhat. In practice, at Mach numbers less

than about 3 the stability limit is about v = 2.

Naturally the question arises as to whether some left-hand side approximate

Jacobians other than (3.20) and (3.22) can be devised to give better stability

properties for the implicitly-advanced 5-wave model. It turns out that if the

approximate Jacobians are taken as:

B + 1{ (0G*) )

(,,,/;+ _\ 0U } j+l

(6.28)

(6.29)

where ]I)] is defined in (6.11), then the Fourier transform of the linearized left-

hand side operator is given by

v [ b(0(/))[(1- cos('))+_(M) = I + {w(0(g0) +w(0(/)) }

i(O_¢o(O,_sinC(O]},{i+ v [ 15(0_.0) (1-_ou" _ '/ " j {_(o_'))+,,,,(o_i))}
(6.30)
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Numerical analysisof the resulting generalizedeigenvalueproblem showsthis

method to be unconditionally stable for first-order spatially accurate computa-

tions. This linearized analytical result is confirmedin practice aswell. First-order

results have beenseento be stable at CFL numbers ashigh as 1000,although the

optimum u for convergence generally occurs between about 5 and 10.

Unfortunately, use of (6.28) and (6.29) in conjunction with a second-order

right-hand side for the 5-wave model proves in practice to be even less stable than

when the grid-aligned Jacobians (3.20) and (3.22) are used. An example of a

stability analysis is shown in figure 6.7 for the same conditions as figure 6.5, only

now the Fourier transform of the left-hand side (6.30) is used in place of (6.26).

The maximum r, for stability is only 0.6, compared with 1.4 for the grid-aligned

approximate left-hand side.

In order to attempt to improve the stability properties of the 5-wave model

for second-order accurate computations using the approximately-factored implicit

scheme, the method is reformulated using second-order left-hand side spatial ac-

curacy. This makes it necessary to solve a block-pentadiagonal system rather than

tridiagonals during each sweep. The procedure outlined by Barth [29] is followed

to determine an appropriate form for the approximate left-hand side Jacobians

for second-order accuracy. The end result is given here for the /th row of the

block-banded matrix for the first sweep in solving the Euler equations:

[...,O,(N1),,(N2),,((N3),+I/(JAt)), (N,t),, (Ns),, 0,...],

with

1

(Nx), = _ [ ( OF* '_\ ou ],_,+

,,.0..,,_,+ +
(N3) = L + /

(6.31)

(6.32)

(6.33)

(6.34)
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_34b(o_')),+_/_- -¼b(o_')) ,_] (6.35)
'-/1

I [ f)(8(gO)li+,12].(N,),=-_L/0F*_ -\ 0U )_+2

A similar form results for the second sweep.

(6.36)

A stability analysis is carried out

using

M = [I + JAt(O$A + + 0+A_-)] [I + JAt(OfB + + 0+B_-)]. (6.37)

The Off are defined to be the following second-order difference operators:

1
0:(3 = _3(.)_ + 2(.)k+1- 5(.),+,

1

o;(3 = _(.)_ - 2(.),_, + _(.),__,
(6.38)

where k represents the index i or j. The Fourier symbois of these operators are:

3
90:) = -5 + 2e_("- !e_=¢"'2

_(c9_-) = 32 - 2e-i¢(") + le-i=¢(")"

(6.39)

The Fourier transform of M, with terms linearized about the cell-center using

Roe-averaged values, becomes:

_(M) = I + .fw(O(,)_+w(O(j)_] "

3 ._0@ "0

{(O'(O(J)_(2sin,(j)--lsin2,(J))]}\0U' a J/ 2 "

(6.40)

This linearized analysis shows the block pentadiagonal approximate-factorization

method to be unconditionally stable in conjunction with a second-order spatially

accurate right-hand side. In practice, however, the method is found to be stable
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only up to CFL numbersof about 100 or so. This disagreementbetween theory

and practice arisesas a result of the highly nonlinear nature of the 5-wavemodel.

The stability analysisis only a linearized approximation. Although the practical

maximum allowable CFL number of 100 represents a dramatic improvement over

the value of 2 that results when the grid-aligned left-hand side is employed, the

optimum rate of convergence for steady-state calculations is still obtained for

relatively low CFL numbers between about v = 2 and v = 6.

Example convergence plots are shown in figure 6.8 for second-order spatially

accurate computations of an inviscid shock reflection off a flat plate (M_ = 2.9)

using the 5-wave model. When the grid-independent approximate Jacobians (pen-

tadiagonal LHS) are employed, CFL numbers up to about 100 can be used, but

the optimum rate of convergence is obtained at a CFL number of v = 3 for this

case. Results with v = 2 are also shown for direct comparison with the result

using the grid-aligned left-hand side Jacobians (tridiagonal LHS). Due to the in-

consistency inherent in the use of grid-aligned left-hand side linearizations with

the grid-independent right-hand side, the rate of convergence of the latter method

tapers off as the solution approaches steady-state. However, both methods reduce

the L2-norm of the residual to 10 -s in about the same number of iterations.

In summary, the stability properties of the 5-wave model, advanced implicitly

in time using an approximate-factorization algorithm, can be improved dramati-

cally through the proper choice of approximate Jacobians. However, for simplicity

and consistency all implicit computations in the present study employ the grid-

aligned approximate Jacobians described in Chapter 3. Although the correspond-

ing maximum CFL numbers are more restrictive, they are usually high enough

for most problems to allow for an acceptable rate of convergence. On the other

hand, if the 5-wave model was to be used for higher Mach number flows where the

stability restrictions using the grid-aligned left-hand side are more severe, or in
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time-accurate computations where eachmeshcell is advancedat a constant time

step, it would probably be necessary to employ the grid-independent left-hand side

terms in order to be able to advance the implicit solution at a reasonable rate.

For second-order computations, this would entail the use of a block pentadiagonal

solver.



CHAPTER 7

MONOTONICITY ANALYSIS

The method for analyzing the monotonicity of the two-dimensional Euler

equations is derived from considerations of the scalar convection equation ut +

au. = 0. The results of the Euler equations analysis are considered to be valid for

the Navier-Stokes equations as well, since the viscous terms add dissipation which

tends to mitigate numerical oscillations that may occur near regions of strongly

varying gradients.

7.1 Scalar Wave Equation

The one-dimensional scalar convection equation is written in finite-volume

form, with forward-Euler time stepping (i is a given cell bordered by (i - 1) to

the left and (i + 1) to the right):

u(.+i) .(_) At
, =-,,., - a-S(/,+_ - f,__) (_1)

Here f,+1/2 and f,-1/_ are the _u_es on the (i + 1/2) and (i- 1/2) cell faces,

respectively, and Az is the distance between the gridpoints. Consider now a com-

putational stencilin which u (n+l) - ('_) - ('_) and - ('_) Godunovi only depends on tt i , ui+i, ui_ i.

[3] showed that one way to insure that spurious oscillations do not develop is to

require that variations in u in each cell in the computational stencil causes a vari-

ation in the same direction in cell i. In other words, if ui-1 increases, then ui

80
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should also increase,or at worst remain unchanged. A similar requirement holds

for changesin the (i + 1)st cell. These requirements can be written

Ou_'+l) > 0 and Oul'_+l) > 0
(n) - o (,_) -

Ui+ 1 OUi-1

(7.2)

or, since fi+l/2 is identical to f(ui+x,ui) and fi-i/_ is identical to f(ui,ui-1),

Ofi+_ < 0 and 2 > 0. (7.3)
Oui+l - Oui-1 -

A third restriction is ou_ /ou i > 0, but this merely limits the time step.

As an example of the usefulness of this analysis, consider first-order upwind

differencing, which is already known to be monotone:

/_+_ = a(_i+l + u_)- _lal(_+_ - _)
(7.4)

Here, Ofi+l/2/OUi+l = 1( a -lal), which is non-positive, and Ofi-1/2/Oui-1 =-

!(a-F [a[), which is non-negative. Hence first-order upwind differencing satisfies2

(7.3), as expected. A counter-example is central-differencing, which is already

known not to be monotone:

1

f_+_= _(_+1 + _)
1

£__ = _a(,,_+ ,,__i).

(7.5)

Here, it is seen that (7.3) can never be satisfied except for the degenerate case of

a 0, since both Ofi+l/2/Oui+l and Ofi-1/2/Oui-1 = 1_a.

7.2 Euler Equations

The ideas from the last section extend in a straightforward manner to the

one-dimensional Euler equations. These can be diagonalized yielding three non-

linearly coupled convection equations, each which describes the convection of a
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"characteristic variable." Satisfying requirement (7.2) for eachof these variables

then implies monotonicity for the numerical scheme.

Extension of this analysis technique for usewith the two-dimensional Euler

equationsis not as simplebecausethe equations arenot diagonalizable in general,

as discussedin Chapter 2. However, the influence of variations in the conserved

variables can be decoupled locally, as described below. First, the two-dimensional

Euler equations are written in finite-volume form with forward-Euler time step-

ping, and it is assumed for simplicity that the mesh is made up of square cells

with face length As:

U are the conserved variables and q, are the fluxes per unit face-length on the ceU

faces, given by (5.10). It is assumed that the computational stencil is made up of

only (i,j), (i + 1,j), (i- 1,j), (i,j + 1), and (i,j- 1), so that in one time step

Ui,j is only a function of its initial value and the values in the four immediate

neighboring cells. Thus this analysis only applies to a spatially first-order accurate

scheme.

Now, instead of one equation, there are four coupled equations, and the quan-

tity vvl,j,_TT('_+z)/vvi+15,/,_TT('_) for example, is not a single variable but a 4 × 4 matrix.

_T T(n+ 1 )/_TT (n)
The matrices "_"i,j ,,_,.,i , where k = (i + 1,j), (i - 1,j), (i,j + 1), (i,j - 1),

are termed the "influence matrices." The four eigenvalues of each influence ma-

trix represent the change of certain characteristic variables at (i,j) caused by

the change in those same four variables in the corresponding neighboring cell.

Since the equations describe the convection of these characteristic variables, non-

negativity of the eigenvalues of each influence matrix implies monotonicity for the

corresponding set of characteristic variables. Note, however, that the characteris-

tic variables associated with the cells (i -4- 1,j) are not the same as those for cells
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(i,j 4-1), except for the entropy; therefore it is not clear what the combined effect

of these monotonicity properties is. Nonetheless, this approach is utilized to help

define a limiting procedure for reducing oscillations in two-dimensional solutions.

The conditions equivalent to (7.2) for the two-dimensional Euler equations

are

e.v. OU_ ) >

or, equivalently,

0 k = (i + 1,j),(i- 1,j),(i,j + I),(i,j - 1) (7.7)

(0/I'_+ _ ,j (0_lq,j+ae
e.v. 0Ui-lj >_ 0 e.v. 0Uij-1 -

where e.v.(.) represents "the eigenvalues of (.)'.

(7.s)

If the grid-normal angle 0g is

varied over the full range of possible angles, then satisfying all four inequalities

in (7.8) is redundant. Satisfying the two inequalities on opposing faces (say the

(i+l/2,j) face and the (i-1/2,j) face) is then sufficient to insure this monotonicity

property.

In order to proceed with the monotonicity analysis for the 5-wave grid-

independent model, (5.10) is written in slightly different form:

1 q, 1
_,+_,,_ = _(_,+1,_ + ,,j)-_{[ft*] [A*]cos(0_- 0_)lrr+ (7.9)

[_**] [k**l(-sin(0_ - 0g)) _** }.

[15,.*] is the matrix of wave vectors acting in the 0_-direction (15t.1,2,4,5 in (5.11)).

[1_**] is the corresponding matrix of wave vectors acting in the (01 + })-direction

(only the shear vector, l_s in (5.11), is used in the 5-wave model). Then [A*] =

diag(q_ + a,q_ - a,O_,q_) and I/k**] = diag(÷_ + a,_ - a,_,_) are the corre-

sponding wavespeeds in those same directions. The wavestrengths are

a2. +/3 2_2ga (Aucos0_ + Avsin0_) ]r2a2

¢_,= l _ - _ (A_cosO_+ A_sin<,)1L (a= ap)
ak (-AusinO_ + AvcosO_t)

(7.1o)
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0

fi**= 0
0 (7.11)

(/3- 1)} (aucose_+ avsine:,)

The present study concentrates on the variations in l_/* and i_**. It is assumed

that the wave vectors, wavespeeds, and 0_ are constant, and all variables are taken

as the Roe-averaged values. In addition,/3, although a function of Au, Av, and

Ap, is considered constant in order to simplify the final expressions. With these

assumptions, this becomes a linearized analysis and one can obtain

0Ui+l,i
1 c9_ 1 _ .,01"/*2 b-U(eg)-_ _[R'] [X*]cos(e:,- 6)1o--_ +

aft"
[lk**] [_**](-sin(e_ - eg) ) _ }.

(7.12)

In a similar fashion, for the (i - 1/2) face

cgU _- _,i
1 O'_ 1 _ ., 0{'1"2b-d(6)-_ t [R*ll[_*lcos(S_,- 6)10-d-_L+

0¢1"*
[R*'ll[X'*]C-sin(°:, - 6)) _ }.

(7.13)

The monotonicity constraints are

( 0qh+½ )e.v. 0Ui+l < 0

(oo,_,)e.v. 0Ui-1 >_ O.

(7.14)

The derivative matrices for the 5-wave model can be found as 0t_*/OUR =

, (7.i_)

0 0 00 0 0

0 0 0 '
(fl-l)O_t (fl-1)cose_t (fl-1)sine_

(7.16)
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and (Of-i*IOUL) = -(0Q*IOUR), and (0fi**laUL)= --(0Q**IOUR).

The monotonicity analysis is carried out numerically. The Mach number M,

flow angle a, and _7 are chosen, then 6g and 0_ are each varied independently be-

tween -90 ° and 90 ° with incremental changes of 7r/32. Eigenvalues are computed

for each condition. They are usually real numbers, but can also be complex con-

jugates; in such cases only the real parts are considered. If they meet the criteria

of equation (7.14), then monotonicity is preserved at that condition. It turns out

that plotting (0_- a) vs. (_7a -a) removes the dependence on a (in other words,

plots are the same regardless of the value of a).

A sample plot is shown in figure 7.1(a). The conditions are M=3, _7=0.95.

There are two very small regions where monotonicity .is preserved. (Note that

some points may be missing from these monotonicity plots wherever the eigenvalue

solver does not converge within a specified number of iterations. However, we are

more interested in general regions than in specific points.) As a specific example,

from the figure it is seen that the scheme is monotone for approximately 30 ° <

0_I--a < 75 ° when 0g -a = 75 °. These example allowable conditions are sketched

in figure 7.1(b).

It is also evident from figure 7.1(a) that if (09 - a) lies between roughly -60 °

and 60 °, then no O'a chosen will insure monotonicity. Other _/'s less than 1.0

produce similar plots. Only when/3 = 1.0 is there always some 0'a that will yield

a monotone scheme, as shown in figures 7.2(a) through (c). Here, the diagonal

where 0_ = 0g corresponds to the grid-aligned scheme. The effect of Mach number

is also shown in the figures. At low Mach numbers, only the grid-aligned method

is monotone (i.e. 0_ must = 0g and t3 must = 1.0), while at higher supersonic

Mach numbers the monotone region is extended slightly from the M=3 case.

It is clear from this analysis that the restrictions on allowable 8_ for a mono-
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tone schemegiven by this analysisarequite severe,if not impossible to meet. For-

tunately, in practice it appears that the restrictions on 0_ can be relaxed somewhat

while still maintaining reasonably non-oscillatory solutions near discontinuities for

a wide variety of flows.

Through an extensive amount of numerical experimentation with actual solu-

tions to the Euler equations, the following observations have been made regarding

reducing the oscillatory behavior of the grid-independent model to an "acceptable"

level:

(1) When M > 1, best results are obtained when 0_ is limited to lie between

a + K * sign(0 u - a) and 0_. K is a small number for lower Mach numbers and is

larger for higher Mach numbers.

(2) When M << 1, 0_ does not need to be restricted, except in a very small

region (see (3) below). Between M = 0 and M = 1, the allowable region is

transitioned smoothly between the subsonic and supersonic cases.

(3) In the boundary layer region of Navier-Stokes solutions, odd-even point

decoupling can occur when 0_ is taken as (0_ + _), and _, _ 0_. This condition

occurs on grid interfaces in the boundary layer that are aligned with the flow

direction, and is due to the fact that all components of the 0_-wavespeeds in

the grid direction equal zero, and the (0_ + _) shear wave has an extremely small

wavespeed. Hence the dissipation is very small, and the result is essentially central-

differencing in that direction. By limiting the angle 0_ to lie outside of a small

region near (0_ - a) = 0 at (0_ - a) = +90 °, this decoupling can be alleviated.

Numerical examples of viscous flows both with and without 0_-limiting will be

given in Chapter 8.

An attempt has been made to pararneterize the "monotonicity regions" in

accordance with the three observations made above. The empirically-generated
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8_t-limited regions for four different Mach numbers are shown in figures 7.3(a)

through (d). It should be stressed that the determination of these regions is

basedonly loosely on theory and primarily on numerical experimentation. The

following empirical schemehasbeenfound to give good results for a wide variety

of problems. It is by no meansdeemedto be the best schemefor improving the

monotonicity properties of the 5-wavemodel. First, somevariables are defined:

(%-,_)+_/2
yl = 1 - rain(M, 1) 4 -4- 0.01

(%-,_)- _/2
Y2 _

1 - rain(M, 1) 4 + 0.01

Y3 ---- 8 +i

y4----8 {tanh<M_220) +I}"

71" 71" )4-- _=n(M, 1y5 - (Sg- a) + 2

y. -- (o, - _) - _ + _n(g, 1)'

Ys --=-Y7

Ylo -- -Y9

(7.17)

(7.1s)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.2_)

(7.26)

yll =- min(y6,max(y,,yg )) (7.27)

Y12 -- max(ys, nin(ya, y8 )). (7.28)

The allowable regions are then taken as:

(eh- ,_) > m=(yl,yT)

(7.29)
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If (8_t- a) does not lie within one of the allowable regions, then it is limited

to either Yll or y12, whichever is closer.



CHAPTER8

TWO-DIMENSIONAL RESULTS

8.1 Euler Computations

Both first-order and second-order two-dimensional Euler computations are

performed for several different cases in this section. ,Unless otherwise noted,

second-order computations do not utilize any type of limiting of higher-order terms

for either the grid-aligned or grid-independent computations. This is done in order

to avoid confusion with and separate the effects of the 8_-limiting procedure.

8.1.1 Shock Reflection

The M = 2.9 inviscid shock reflection case is computed on a Cartesian mesh

4.8 units wide by 1.6 units high. An oblique shock enters the domain from the

upper left corner, reflects off the bottom wall, and exits out the right end. The

flow is turned through an angle of 10 ° by the incident shock. The nondimensional

boundary conditions (nondimensionalized by combinations of fi_ and 5_) are:

at inflow p = 1, pu = 2.9, pv = 0, and pE = 5.9907; at the top boundary

p = 1.6328, pu = 4.3272, pv = -0.7630, and pE = 9.5091; at the back boundary,

outflow conditions are set by second-order extrapolation from the interior; at

the body along the bottom wall, simple reflection boundary conditions are used.

94
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Computations are performed using explicit four-stage time-marching. They are

initiated from freestream conditions and are run until the L2-norm of the residual

of all four equations drops below 1 × 10 -12. Computations are performed on two

different mesh sizes: a 49 × 17 mesh and a 97 × 33 mesh.

First-order computations using the grid-aligned solver, run at a CFL number

of v = 2.2, converge in 158 iterations on the coarse mesh and 258 iterations on the

fine mesh. Nondimensional pressure contours and pressure values along three j =

constant cuts (left to right through the mesh) are shown in figures 8.1 and 8.2.

First-order results using the 5-wave model are also obtained using v = 2.2. The 8d

values are frozen using the following procedure: they are computed every iteration

for the first 20 iterations, then only once every 20 iterations until the log of the L2-

norm of the residual drops to below -3.5. After this, the 0a values remain frozen.

The 5-wave model is run on the coarser mesh both with and without the 0 l-

limiting derived in Chapter 7. The solution converges in in 245 iterations (61 not

limited) and 191 iterations (01-limited). On the finer mesh the solution converges

in 319 iterations (01-limited). The results are given in figures 8.3 through 8.5. On

both meshes, the 5-wave model gives sharper shock wave resolution than the grid-

aligned scheme. The _1-unlimited method produces the sharpest resolution, but

at the cost of oscillatory behavior near the discontinuities. When the 01-limiting

procedure is employed, 5-wave model results are still significantly sharper than

the grid-aligned results, and appear to be monotone as well for this problem.

The grid-aligned model on the 97 × 33 grid converges in about 14.1 CPU

seconds on the Cray 2 computer, while the 5-wave model requires about 25.4

CPU seconds (_1-1imited). Thus, the 5-wave model is about 1.8 times more costly

than the grid-aligned model to reach the same level of convergence for this case.

Per iteration, the 5-wave model is about 1.5 times more costly. A significant

percentage of this cost is associated with the limiting of the 01-directions. Without
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0_-llmiting, the 5-wave model is only about 1.2 times more costly than the grid-

aligned model per iteration.

Second-order results for this problem are obtained using a CFL number of

v = 1.1. Grid-aligned model results are shown in figures 8.6 and 8.7 on the two

grids. Since no limiting of higher-order terms is employed, there are undershoots

present in the solutions forward of each shock wave. These solutions converge

the L2-norm of the residual of all four equations to 1 x 10 -12 in 249 and 423

iterations, respectively. Second-order 5-wave model results are given in figures

8.8 through 8.10. A 8_-unlimited solution on the 49 x 17 mesh (figure 8.8) shows

very sharp shocks, but a large amount of oscillatory behavior is also present aft

of the shocks. This solution converges in 494 iterations. When 0_-limiting is

used, these oscillations are reduced in magnitude, while" still maintaining slightly

sharper shock resolution than the grid-aligned method as shown in figure 8.9. In

the figure, the wiggles in the "3.6"-level contour are caused by oscillations which

are still present downstream of the reflected shock. The 5-wave 9_-limited solution

on the 97 x 33 grid is shown in figure 8.10. Again, results are slightly sharper than

the grid-aligned method on the same grid and additional oscillations are visible

downstream of the reflected shock. The 0_-limited solutions converge in 391 and

659 iterations, respectively, on the coarse and fine grids.

For the shock reflection problem, the 5-wave model appears to be a viable al-

ternative to the grid-aligned model for first-order computations. When 0_-limiting

is employed, results appear to be free from spurious oscillations, and shocks are

captured with fewer interior points than the grid-aligned method. In fact, the

49 × 17 5-wave solution gives comparable resolution to the grid-aligned solution

on a mesh with four times as many mesh cells. For second-order computations,

very little advantage of the 5-wave model over the grid-aligned model is seen.

Results are slightly sharper, but the extra cost for the method may outweigh its
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small advantage. Also, small oscillations still plague the solutions.

8.1.2 Ramp Flow in a Channel

Euler computations are performed for supersonic channel flow with a 15 °

finite-length ramp at an inflow Mach number of 2.0 on a 49 × 17 grid. This case

was first used to test grid-independent flow solvers by Levy et al. [24]. The grid

is 3 units long by 1 unit high. The ramp begins at z = 0.5 units and is 0.5 units

long. At the end of the ramp, the bottom channel wall again becomes parallel

to the top wall. A picture of the grid is given in figure 8.11. The boundary

conditions are uniform freestream inflow at the left, second-order extrapolation at

the right, and simple reflection conditions at the top and bottom walls. For this

case, some extra dissipation necessary to prevent oscillations in the 5-wave model

solution near the bottom wall in the region of the expansion fan was provided by

using the grid-aligned scheme in combination with the simple reflection boundary

conditions to obtain the flux at the lower wall.

A first-order computation using the grid-aligned method is shown in figure

8.12. As in the shock reflection case, an explicit four-stage time-marching scheme

is employed using a CFL number of r, = 2.2. Figure 8.12(a) shows Mach number

contours, while figure 8.12(b) shows Mach number values along two j = constant

lines (left to right through the mesh). It can be seen that this grid-aligned first-

order result smears the primary shock a good deal and barely shows evidence

of the two reflected shocks. The 5-wave model with no 8_ limiting, shown in

figure 8.13, shows extremely sharp resolution of the shocks. However, significant

oscillations are also present in the solution. When 8_-limiting is employed, the

oscillations essentially disappear, but much of the resolution of the 5-wave model
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is also lost. These results are shown in figure 8.14. They are still sharper than

the grid-aligned results. The results from figures 8.12_ 8.13 and 8.14 converge the

L2-norm of the residual of all four equations to 1 x 10 -12 in 263, 346, and 315

iterations, respectively. The 5-wave model uses the same strategy for freezing 0a

described for the shock reflection case.

Second-order solutions are obtained with v = 1.1. Results using the grid-

aligned model are shown in figure 8.15, while 5-wave model results without and

with 0_-limlting are shown in figures 8.16 and 8.17, respectively. When no 0_-

limiting is employed, results are very sharp but oscillatory. The 0_-limited solu-

tion is significantly less oscillatory, and is slightly sharper than the grid-aligned

solution. However, as for the second-order shock reflection case, the amount of

benefit probably does not outweigh the disadvantages in this case.

8.1.3 Oblique Supersonic Shear

The oblique shear wave case is computed on a 61 × 21 Cartesian mesh 3 units

wide by 1 unit high. Fluid enters the domain from the lower face at a 45 ° angle

and exits out the top face. To the left of the shear wave M = 1.812, while to the

right M = 1.510; there is one transition cell where M = 1.661. There is no pressure

change through the shear. The nondimensional boundary conditions are: to the

left of the shear p = 1, pu = 1.282, pv = 1.282, and pE = 3.427; to the right of

the shear p = 1, pu = 1.068, pv = 1.068, and pE = 2.926; at the transition zone

p = 1, pu = 1.175, pv = 1.175, and pE = 3.165; on the top and right boundaries,

outflow conditions are obtained using second-order extrapolation.

The exact solution is shown in figure 8.18. Figure 8.18(a) shows Mach number

contours while figure 8.18(b) shows Mach number values along three j = constant
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lines through the mesh. All computations are performed using four-stage explicit

time-marching. When initiated from the exact solution, a first-order Euler com-

putation using the grid-aligned method smears the shear wave significantly, as

shown in figure 8.19. The first-order 5-wave model, with 6_-limiting, converges

to the results shown in figure 8.20. Results are significantly sharper, although

there is still some oscillatory behavior near the discontinuity. For this particular

example, the initial condition for the 5-wave model is the grid-aligned solution.

The 0a values are recomputed once every 30 iterations until the log of the L2-norm

of the residual drops below -3.5, after which they remain frozen. It should be

noted that if _ is allowed to be zero (instead of being restricted to be greater than

0.05) and the outflow boundary conditions are extrapolated from 45 ° upstream

(instead of in a grid-aligned fashion), then the 5-wave'model can maintain the

exact solution in one iteration when the exact solution is the initial condition.

Second-order solutions using the grid-aligned and 5-wave models are shown in

figures 8.21 and 8.22. The grid-aligned results are now fairly sharp, comparable in

width to the first-order 5-wave results. The second-order 5-wave results are even

sharper, however. The shear wave is now resolved with almost no spreading at

all. Because this is a fairly weak shear wave case, the grid-aligned model does not

yield any noteworthy pressure distortions as a result of misinterpreting the oblique

shear wave. Both the grid-aligned and 5-wave models produce pressure fields in

error from the exact solution by less than 0.5%. This 45 ° supersonic shear wave

case demonstrates an advantage of the 5-wave model over the grid-aligned model.

For both first and second-order computations, the model resolves the oblique shear

wave with significantly fewer interior points than the grid-aligned method.
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Euler computations are performed for the NACA 0012 airfoil at M = 1.2,

a = 0 ° on several different grids. The finest is a 257 x 73 O-mesh with an outer

boundary extent of 20 chords and an average minimum spacing at the body of

0.0031 chords. It is shown in figure 8.23. Two coarser meshes, a 129 x 37 and

a 65 x 19, result from removing every other point from the next finest mesh.

The inflow/outflow boundary conditions in the farfield for supersonic flow are

simply freestream values when the grid boundary cell is an inflow boundary (i.e.

the outward-pointing grid-face normal points into the freestream direction), and

are extrapolated from the interior using second-order interpolation when it is an

outflow boundary. The boundary conditions at the body are simple reflection

conditions, and periodic boundary conditions are enforced where the grid meets

itself behind the airfoil.

These airfoil results, as well as all results to follow in the remainder of the

paper, are computed using the implicit approximate-factorization time-stepping

procedure. The CFL numbers at which the solutions are advanced are taken in

accordance with the analysis performed in Chapter 6. Results are not converged

to machine zero in general; sufficient convergence is assumed when the L2-norm

of the residual drops by at least 4 orders of magnitude and/or the lift and drag

values settle down and do not vary significantly with further iterations.

At the conditions enumerated above, the NACA 0012 airfoil has a flowfield

with a curved bow shock located in front of the airfoil and oblique shocks ema-

nating from the trailing edge. Figures 8.24 through 8.26 show results for the first-

order accurate grid-aligned model on the three successively finer grids. Shown are

nondimensional pressure contours, plotted in increments of 0.05 (the freestream
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value of 1.0 is not plotted), as well as pressure along a j = constant grid line

over the upper half of the airfoil. The j = constant grid line is taken at j = 11,

j = 21, and j = 41 for the three grids. Its location is shown in figure 8.27. The

two finer meshes produce reasonable-looking results, although the shock waves

are very smeared. The coarsest mesh (65 x 19) produces very poor results, but

this grid is so coarse that a good solution would not be expected in any case.

First-order 5-wave model results (with 0_-limiting) are computed by restarting

the corresponding grid-aligned solution with 0d frozen. Results are shown in fig-

ures 8.28 through 8.30. The shock waves are captured much more sharply by this

method, although there are still some small oscillations present near the discon-

tinuities. The 65 × 19 mesh is aga/n too coarse to produce a reasonable-looking

solution.

In an effort to explore the grid-sensitivity of the grid-a_gned and 5-wave

models, computed drag values are plotted for each of the grids in figure 8.31. For

a first-order scheme, it is expected that the results behave in a linear fashion when

plotted w. the inverse of the square root of the total number of gridpoints. This

indeed appears to be the case for both methods (on grid sizes of 129 × 37 or finer).

The drag coefficient is approaching about 0.0955 as the grid approaches infinite

refinement. The 5-wave model produces drag values in closer agreement with this

"correct" value on all three grid sizes tested. For example, on the 257 x 73 grid,

the 5-wave model gives a drag value 2.0% in error from the extrapolated "exact"

value, while the grld-aligned result is 6.5% in error.

Second-order computations using the grid-aligned model on the three grids

are given in figures 8.32 through 8.34. Results now have much sharper resolution.

Since no limiting of higher-order terms is performed in these computations, some

undershoots and overshoots are present near the computed shock waves. Second-

order 5-wave model results are given in figures 8.35 through 8.37. These results are
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still somewhatsharper than the grid-aligned results, but there are also significant

oscillations near the shocks. Computed drag coefficient values are plotted as a

function of the inverse of the grid size in figure 8.38. Second-order results behave

linearly when plotted this way (for a sumciently fine mesh). The drag coefficient

again extrapolates to about 0.0955 on an infinitely fine mesh for both methods.

The 5-wave model gives better predictions for the drag on all three grids. On

the finest, it deviates from the extrapolated value by 0.05% while the grid-aligned

method deviates by 0.22%.

In summary, use of the 5-wave model for supersonic flow over an airfoil results

in sharper shock resolution and better airfoil drag prediction than the grid-aligned

model. The increase in shock resolution is more dramatic for first-order computa-

tional accuracy, although even second-order results show a noticeable difference.

In spite of the fact that O_-limiting was employed, both first and second-order

5-wave model results are somewhat oscillatory near the computed shock waves.

The effect of limiting the higher-order terms in the second-order solution using

the 5-wave model is investigated at this point. A computation is performed on

the finest mesh with the "rain-rood" limiter employed. This limiter is described

in more detail by Anderson et al. [30]. R.esults are shown in figure 8.39. The

shock waves are resolved with the same number of interior points as figure 8.37,

but now the amount of oscillations near the discontinuities is reduced. Hence

the use of standard limiters for second-order computations seems to be viable

in conjunction with the 5-wave 8_t-limited model. While the limiter does not

guarantee oscillation-free solutions for this model, it does seem to reduce the

amount of oscillations present.
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A grid convergence study is performed using the Euler equations for subsonic

flow over an airfoil in order to investigate the effect of the 5-wave model on an

airfoil flowfield where no shock waves are present. The conditions are M = 0.3

and a = 1 °, and results are computed on the same three O-meshes used in the

supersonic airfoil flow study. Boundary conditions on the body are again simple

reflection conditions, and periodic boundary conditions are applied where the mesh

meets itself behind the airfoil. The inflow/outflow boundary conditions applied

at the outer boundary for subsonic flow are obtained using characteristic theory.

To summarize, the local Riemann invariants R + and R- are constructed as

2a(O
R + = q_i) +

7-1

2a (°)
R- = q_O)

7-1'

(8.1)

where qg indicates the velocity normal to the outer grid boundary face and the

superscripts "(i)" and "(o)" indicate that conditions are taken from inside and

outside (= freestream) the grid boundary, respectively. The normal velocity and

speed of sound at the face are then taken as

1

(qg)t = 2 (R+ + R-)

- 1(k+ _ R-).
o4-- 4

(8.2)

If (qg)f > 0, the entropy sf and the tangential velocity (rg)f are extrapolated from

inside the grid boundary. Otherwise, they are taken as the freestream values. The

density boundary condition is then obtained using

pf = (a_ 1/"
\sf]

(8.3)

The u and v velocity components are constructed from (qg)f and (rg)f, and the

energy is calculated using the equation of state.
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Figure 8.40 is a plot of computed drag coefficient vs. the inverse of the square

root of the grid density for the grid-aligned scheme and the 5-wave model on the

three grids using first-order spatial discretization. The "exact" Euler solution

should give zero drag. The 5-wave model, restarted from the grid-aligned solution

with 0n frozen, gives a far better prediction of the drag than the grid-aligned

scheme for all three grids. Entropy contours (where entropy is defined as p/(pY) -

1) for both methods are given in figures 8.41 and 8.42. Contour values plotted are

in increments of 0.001 for both figures. These figures indicate significantly lower

entropy production over the airfoil surface using the 5-wave model. The maximum

entropy values for the grid-aligned model are 0.0303, 0.0251, and 0.0183 for the

coarsest through finest meshes, respectively. For the 5-wave model the maximum

values are only 0.0052, 0.0028, and 0.0018.

It is believed that the difference in entropy levels is due to the different ways

that the two models interpret the flow near the stagnation point of the airfoil.

Near the stagnation point, the flow undergoes very rapid turning with relatively

small changes in pressure. The grid-aligned model interprets this turning to be

in part due to the action of + and - acoustic waves with nearly offsetting Ap's.

Because the local flow is subsonic, the wavespeeds associated with each of these

acoustic waves are of opposite sign, so the flux computed at interfaces near the

leading edge is assigned a pressure which is too high or low by an amount Ap. This

results in increased entropy generation. In contrast, the 5-wave model interprets

the rapid turning near the stagnation point to be due primarily to the action of a

(0_ + _) shear wave, which has no associated pressure jump across it. Numerical

entropy generation is lower as a consequence.

Total pressure loss values (= (ptoo - pt)/ptoo) along the upper surface of the

airfoil are plotted for the grid-aligned and the 5-wave models in figures 8.43(a)

and (b). The total pressure loss approaches zero for both models as the grid is
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refined, as expected. Near the leading edgethe grid-aligned model showsmuch

higher magnitudes than the 5-wavemodel, reflecting the higher entropy generated

there. Over the majority of the surface of the airfoil on the finest mesh, however,

the grid-aligned model shows lower total pressure loss values. It appears that

these are approaching zero at a faster rate than those from the 5-wave model as

the grid is refined. The reason for this is unknown.

Drag coefficient values from the grid-sensitivity study for second-order accu-

rate computations are plotted in figure 8.44. Again, the 5-wave modal gives lower

values than the grid-aligned model, but in this case the difference is not so dra-

matic as for first-order. This is reflected in the entropy contours as well, shown

in figure 8.45 for grid-aligned and 8.46 for the 5-wave model. (Contour values

plotted are in increments of 5 x 10 -s for both figures.) "l_he 5-wave model appears

to have only slightly lower entropy values overall. The maximum values for the

grid-aligned method are 0.0018, 0.0011, and 0.0006 on the coarsest to finest grids,

respectively, while the maximum values for the 5-wave model are 0.0015, 0.0009,

and 0.0007. Total pressure loss values on the airfoil upper surface are plotted in

figures 8.47(a) and (b). In general, results are similar for the two methods. The

5-wave model gives somewhat higher values just aft of the leading edge than the

grid-aligned modal on all three grids, but values near the trailing edge are lower.

For completeness, the pressure contours resulting from the second-order fine mesh

5-wave model solution are shown in figure 8.48. Pressure levels in increments of

0.005 are plotted. The grid-aligned result on the finest mesh is identical to this

figure, so it is not shown.

In summary, first-order computations using the 5-wave model give lower nu-

merical entropy generation in a subsonic ELder computation over an airfoil. As

a result, the drag prediction is nearer to the correct result of zero. Second-order

computations using the 5-wave model still give better drag prediction than the
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grid-aligned method, but the difference is not as great as for first-order. Entropy

levels are similar for the two methods. Hence there does not appear to be a sig-

nificant advantage to using the 5-wave model over the grid-aligned method for

second-order computations of subsonic airfoil flows such as this.

8.2 Navier-Stokes Computations

Only second-order spatial accuracy is used for allNavier-Stokes computations.

No limiting of higher-order terms is employed. All solutions are advanced in time

using the implicit approxlmately-factored algorithm, and convergence is assumed

to be reached when the L2-norm of the residual drops by at least 4 orders of

magnitude and/or the lift and drag values settle down and do not vary significantly

with further iterations.

8.2.1 Shock/Boundary-Layer Interaction

A shock/boundary-layer interaction is computed over a flat plate in a domain

that is 1.84 units wide by approximately 1.29 units high. The plate is assumed

to start 0.24 units from the left. The finest grid employed is a 93 x 141 with

minimum spacing at the wall of 9 × 10 -s units. It is shown in figure 8.49. Coarser

meshes of 47 × 71 and 24 × 36 are obtained by removing every other point from

the next finest mesh.

The inflow Mach number is 2.0, and the Reynolds number per unit length is

206,000. Laminar flow is assumed. A shock wave enters from the left of the domain

at a height of 0.7930 units. It has an angle such that it impinges on the plate

1.0 unit from the leading edge. The flow is turned through an angle of 3.1 °. The
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Figure 8.49: Shock/Boundary-Layer Interaction 93 x 141 Grid
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boundary conditions at inflow (below the shock) are: p = 1, pu = 2, pv = 0, pE =

3.78571. Above the shock and along the top wall: p = 1.13038, pu = 2.18509,

pv -- -0.11834, pE = 4.23855. At the right wall all variables are extrapolated

from the interior using second-order interpolation. Along the bottom wall in front

of the plate symmetry conditions are applied, and on the plate itself no slip, zero

pressure gradient, and adiabatic wall boundary conditions are assumed. For this

problem, the thin-layer Navier-Stokes equations are employed: it is assumed that

viscous terms arising from derivatives in the streamwise direction are negligible in

comparison to the viscous terms arising from derivatives normal to the wall.

Pressure contours for the grid-aligned model on the three grids are shown

in figure 8.50, while 5-wave model results are shown in figure 8.51. (The 5-wave

model results are obtained by restarting the grid-aligned 'solutions with 0a frozen.)

Values in the figures are plotted from 0.84 to 1.44 in steps of 0.03. Results are very

similar for both methods, with the exception that the 5-wave model gives slightly

sharper shock resolution. Also, some oscillatory behavior is evident near the plate

leading edge as well as at the shock inflow location for the 5-wave model. Skin

friction plots over the plate surface are given in figure 8.52 for the two methods.

In figure 8.52(a) it is seen that the grid-aligned method gives reasonable levels

on all three grids, with the greatest discrepancies between the solutions occuring

in the separated region and near reattachment. The 5-wave model, on the other

hand, gives very high skin friction levels on the coarsest mesh (as shown in figure

8.52(b)), indicating that the velocity profiles are predicted to be too full. This can

be seen in the computed velocity profiles at two locations on the plate in figure

8.53, in comparison with grid-aligned results on the same grid. On the two finer

grids, the 5-wave model gives consistent skin friction results in good agreement

with the grid-aligned model.

It is not known why the 5-wave model predicts fuller profiles on the coarsest
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mesh for this case. Aside from this discrepancy, the model behaves much as

expected, considering the results from the earlier Euler shock reflection case. For

this second-order computation, the shock structure is captured slightly better

than when the grid-aligned scheme is used, but some oscillations also appear in

the flowfield. The very small increase in shock resolution does not seem to be

worth the added expense and increased oscillatory behavior of the 5-wave model.

8.2.2 Subsonic Separated Flow Over an Airfoil

A specific case where an advantage of the 5-wave model over the grid-aligned

model is fully realized in a second-order computation is for viscous separated flow

over a NACA 0012 airfoil at M = 0.5, ct = 3 °, and Re = 5000. Full Navier-Stokes

computations are performed on a series of C-meshes. The finest, a 257 x 97 grid

with outer boundary extent of 14 chords and average minimum spacing on the

body of 2 x 10 -4 chords, is shown in figure 8.54. There are 176 cell faces on the

airfoil. Coarser meshes are obtained by removing every other gridpoint from the

next finest mesh. Subsonic inflow/outflow boundary conditions are applied on the

outer boundary, and no slip, zero pressure gradient, and adiabatic wall conditions

are used at the body. Continuation conditions are applied on the wake cut.

This test case was first discussed by Venkatakrishnan [31]. He found that

on even reasonably fine meshes, the grid-aligned upwind scheme does a poor job

for this case since there is a detached shear layer emanating from about mid-

chord on the airfoil upper surface which is not oriented with the grid. The shear

is misinterpreted by the grid-aligned model as a combination of shear and com-

pression/expansion, with the end result of a distortion in the computed pressure.

Grid-aligned results on the three grids showing this pressure distortion are shown
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Figure 8.54: NACA 0012 257 × 97 C-Grid
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in figure 8.55. Pressurecontours are plotted in incrementsof 0.005. As the grid is

refined the distortion diminishes in extent, but does not goes away on these grids.

The 5-wave model is run by restarting the grid-aligned solutions with Oa

frozen. Results are plotted in figure 8.56. On all three grids, the pressure distortion

is essentially eliminated. Lift coefficient values, plotted as a function of the inverse

of the number of gridpoints in figure 8.57, show that both models are approaching

the same value of ct _. 0.055 as the mesh is refined. In spite of the fact that the 5-

wave model does a good job of reducing the pressure distortion on all three meshes,

the lift is seriously overpredicted (by about 120%) on the coarsest one. This can

be seen in a plot of surface pressure coefficient on the 65 x 25 grid, given in figure

8.58. The surface pressure values given by the 5-wave model are significantly lower

than the grid-aligned values over the upper surface, as weU as slightly higher over

the lower surface. On the other grids the two models are in closer agreement,

although the grid-aligned model is always closer to the "correct" extrapolated lift

coefficient. Drag coefficient values are plotted in figure 8.59. Figure 8.59(a) shows

the total drag coefficient, while figure 8.59(b) breaks the drag coefficient into its

friction drag and pressure drag components. Both models do reasonable jobs of

predicting the drag on the two finest meshes.

In summary, the 5-wave model can essentially eliminate pressure distortions

which arise in a separated viscous flow computation due to misinterpretation of

oblique shear waves by the grid-aligned scheme. However, the surface pressure

levels (and hence the lift coefficient) predicted by the 5-wave model are more

sensitive to grid density than those predicted by the grid-aligned model, so a

fairly fine mesh is required for a reasonable level of accuracy in this regard. Since

the grid-aligned method shows pressure distortions on even the 257 x 97 grid, the

5-wave model appears to be worth the additional effort in this case.

All results obtained for the Navier-Stokes cases to this point using the 5-wave
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model haveemployedO_-limiting. When O_-limiting is not employed, the odd-even

point decoupling mentioned in Chapter 7 can occur in the boundary layer. An

example is shown in figure 8.60. Pressure contours over the rear half of the airfoil

are shown for computations on a 129 x 49 grid. Several of the contours show the

oscillatory behavior.



CHAPTER 9

EXTENSION TO THREE DIMENSIONS

9.1 Governing Equations

The nondimensional Navier-Stokes equations in curvilinear coordinates and

conservation form can be written in three dimensions as:

where

r pu* ]
1 ] pu:v 4- _,p (9.3)

F*= _ / w+ezp
I. pu*H

pv*u + rlz p

pv*v + Tlyp

pv*w + rlz p

pv*H

(9.4)

pw*

1 pw*u + _p]

H*=_ pw*v4-C_p /

pw*H J

(9.5)
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1

v j

0

Gn_ + _;r_2 + Gn3
Gr2a + Gr22 + Gr23
GT31 + _r32 + Gn3

_(v_lj - ¢1) + _(v_i - G) + _(v_3_ -G)

1

G;= 7

0

r/,rll + r/_r12 + r/zr13

r/_T21 + r/yT"22 + r/zr2a

r/_ral + r/yrs2+ r/=ra3

0

Grn + Gr_, + Grl3
Gr21 + Gr22 + Graa
Gral + Gra, + Gras

C,(vj_lj - G) + G(vj*,_ - ¢2)+ ¢,(vj_._j- G)

(9.6)

(9.7)

(9.8)

u* = Gu + f_v + Gw

v* = r/,u + r/_v + r/_w (9.9)

w* = Gu + ff_v + Gw.

All variables are nondimensional as defined in Chapter 2. The terms u*, v*, and

w* are the contravariant velocity components, and 171, V2, and Vs represent u, v,

and w, respectively, rlj and (_i are given by (:2.14) and (2.15), but now

O

OX_

c9

bX2

c9

c9X3

c3 O O

a 3 o

a a ¢_a
- _'_ +"Y, + o_"

(9.1o)

The ideal gas equation of state is given by

ua + v a + w 2 )=(7-1)P _- 2 ' (9.11)

Also, Stokes' hypothesis, A + (2/a)_z = o, and Sutherland's law (9..34) are assumed

to apply, and 7 is taken as 1.4 and Pr is taken as 0.72.
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In three dimensions, the inverse of the metric Jacobian J is given by:

(9.12)

and the metrics of the transformation are

_ = J(y,Tz¢ - yCz,7)

r/z = J(ycz_ - y_z¢)

_ = J(v_z, - y.z_)

_y = J(z,z¢ - z_z,7)

flu = Y(zcz_ - z_z¢)

(_ = J(z_z, 7 - z,z¢)

_z = J(z,TY¢ - xCY,1)

rlz =J(z¢y_-x_y¢)

iz = J(z_Yn - z,TY_).

(9.13)

The Enler equations are the same as the Navier-Stokes equations (9.1), except

that the viscous terms F_, G_,, and H* are taken as zero.

9.2 Spatial and Temporal Discretization

Since only Euler computations axe performed in three dimensions in this

study, the discretizations described here will not include viscous terms. The basic

scheme employed is CFL3D [32]. It is an implicit finite-volume method, in which

the left-hand side is approximately factored and AtU (n) is solved for in three

sweeps through the mesh:

I _0F*

I _ 0G*7-£/+

I _ OH*

AtU' = T

I

AtU" - JAt AtU' (9.14)

I
AtU ('') AtU"

JAr

where the terms AtU' and AtU" are intermediate results. The conserved variables

are updated at the cell centers using

U ('_+1) = U (n) + AtU ('). (9.15)
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The right-hand side T in (9.14) is defined by

T=- I6_F* + 6_G* + 6¢H*)

and

(9.16)

g_F* = F*i+_,j, k - F*i_½#,k

6,1G* = G*i,j+½, k - G*i6_½,_ (9.17)

_¢H* = H*i,j,k+ ½ - H*ij,k_ ½.

The right-hand side terms in (9.17) are the fluxes at the six faces of a computa-

tional cell, evaluated through the use of a flux function, as described in sections

9.3 and 9.4. The right-hand side T can also be written in the form

6

(9.1s)T - - Z _tAAt'
l=l

where the summation is over the six faces of the computational cell, AAt is the

area of cell face t, and (_ is the normal flux per unit face-area, given by:

Pq_ ]

pqgu + p(c,)g I

= pqgv + p(%)g ] (9.19)

pqaH J

The variables c=, c_, and c= represent the components of the unit-normal direction

vector _ in the z, y, and z directions, respectively. They are written in spherical

coordinates as:

c, - cos0cos¢

cu = sin0cos¢ (9.20)

c, = sine.

The subscript g is used to indicate the grid-face normal angle. For example,

(c=)9 = cos09cos¢9. The angles 09, ¢9 and the grid-face normal direction vector

_g are pictured in figure 9.1. The variable qg is the outward velocity normal to

the cell face, given by

qg = u(c,:)g + v(%)g + w(c,)g. (9.21)
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The implicit spatial derivatives of the convective and pressure terms are spa-

tially first-order accurate, resulting in block-tridiagonal inversions for each sweep.

Approximate left-hand side Jacobians of the form given in Chapter 3 are employed

regardless of whether the grid-aligned or the grid-independent model is employed

on the right-hand side.

9.3 Grid-Aligned Flux Function

The normal flux per unit face-area in three dimensions can be computed using

the grid-aligned flux function:

4
1 1

k=l

(9.22)

where the waves are represented by the vectors

L B + aO9

(9.23)

1:_3 --

_- a(_=)9

- a(c=)g

0

-a(_xn)g
-a(Ar2)_
-a(Ar3)g

1

_2

_5

1 ^2 _2 _2_(_ + + )

(9.24)

(9.25)

(9.26)
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The terms At1, At2, and AT3 are given by

A,'I -- (Co.) 2 - I)A,_ + (c.)(c,)Av + (c_)(c_)Aw

_2 - (_)(c.)_ + ((_,)_ - 1)Av + (%)(_,)Aw (9.27)

_3 - (cz)(c.)_ + (_z)(c_)_. + ((c.) 2 - 1)_w

and the subscript g indicates that the components ((c.)g,(%)g,(cz)g) of the grid-

normal direction gg are used. The Roe-averaged outward velocity normal to the

cell face is

,_,- _(c.)_,+ _(_,,),+ _(_),. (9.28)

The vectors (9.23) through (9.26) represent, respectively, + acoustic, - acoustic,

shear, and entropy waves. 1_1, 1_2, and R4 are eigenvectors of the linearized three-

dimensional Euler equations, while 15,.3 is a linear coml_ination of the remaining

two eigenvectors, which, along with 15,.1, 15,.2, and 15.4, span the eigenspace of this

system. The expression for the combined shear wave 15,.s is derived in Appendix

B, and a geometric interpretation of its effects in state space is given below.

The vector of wavestrengths is given by:

---i (Ap + _a_q.)

fi _ (_p - _a±q_) (9).9)
"-- ,_ ,

where

_q, - ,_,_(_)0+ _v(c_,),+ _(_)..

The wavespeeds are all in the _g-direction and are given by:

_i = 4g+a

_,_=_.

i, = 4_.

(9.30)

(9.31)
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The Roe-averaged (hatted) values are still defined by (4.9).

In three dimensions, the (Au, Av, Ap)-space interpretation of the wave de-

composition is not as helpful as it was in two dimensions, since the jump Am is now

important. Instead, when describing the action of the three-dimensional waves,

the Ap-"direction" is ignored, and jumps are plotted in (A_, Av, Aw)-space.

Hence the change in pressure caused by an acoustic wave cannot be represented.

Figure 9.2(a) shows the change in velocity associated with a +fig acoustic

wave, while figure 9.2(b) shows the change for a -fig acoustic wave. Each of these

waves also causes a positive change in pressure and a change in density, which are

not pictured. Similar to the two-dimensional case, the entropy wave causes only a

change in density (with no change in velocity or pressure), so it is not representable

at all in (Au, Av, Aw)-space. Finally, there are two independent eigenvectors,

as discussed in Appendix B, which represent shear in the plane perpendicular to

the gg-direction. Any two eigenvectors in this plane are independent provided

that the directions of the corresponding velocity jumps are perpendicular. An

example of two such waves is given in figure 9.3. These waves propagate in the

,79-direction , which is normal to the change in velocity across both of the waves.

The two shear waves can be replaced by the single shear wave (9.25) with

strength _/ti. Its net result is the sum of the velocity changes across the other

two. This single shear is, in effect, the wave that causes a change in states from

R to R', where R' is the point in (Au, Av, Aw)-space on the line from L with

direction fig where the perpendicular line from R intersects. This is illustrated in

figure 9.4, along with hypothetical + and - acoustic waves.
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9.4 Grid-Independent Flux Function

The dominant direction of wave propagation for the grid-independent wave

model is again assumed to be the velocity-difference direction. For three-dimen-

sional flow, this direction is given by rTd, defined by the angles (Od,¢a), which are

obtained using:

8d = tan -1 _ (9.32)

(Aw * sign(Au) _
¢_= tan-X\ 7_ _T_ J"

The angles are each defined from -_ to _.

As in the two-dimensional grid-independent model, the wave types and stren-

gths for the three-dimensional model describe the difference between the left and

right states. The wave-propagation direction can be frozen as _ (defined by the

angles (8_,¢_)), resulting in the requirement of a shear wave of type similar to

the shear wave used in the grid-aligned model. The end result is, again, a 5-wave

model, which is computed using:

The Rk are given by

5
1 1

,I,= _ ('I_L + 'I'R)- _ _ _,k fiklS,,a,- (9.33)
k=l

1

ftx = I _ + ,_(c,,)_l

L H+a¢, J

F I I
_2 = I _-a(c,,):, I

I
L _r_ a#h j

(9.34)

(9.35)
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0 i

-a(c.)d]

-a4_J

_b

1 _2 _2)_(u +_2 +

0

_ =_(c.)_ + _(_)_ + _(_.)h..

(9.36)

(9.37)

(9.3s)

(9.39)

The parameters c=, cy, c,, and At1, At2, At3 are still defined by (9.20) and

(9.27). The subscript d and the prime (') indicate the frozen direction g_. For

example, (c_)_ = cosS_cos¢_.

The vector of wavestrengths is given by:

+ _(A_(_)h + _.(c_)h + _(_.)h) ]
_ _(A_(_.)h + _,(_)h + A_(_.)h) /

(_- 1)_ (Au(c=)_ (&'Ap'b_Av(c')_--Ap) ÷ Aw(c")_a) I "

&

(9.40)

The parameter fl is similar in form to that derived in two dimensions. For the

minimum-pathlength model,

Ap/(_a) ]= rain /x_(_):, + A,(c_)_+ A_(c_)h ,1 . (9.41)

The minimum-area model, used for all computations in this study, results when

--rain AuCc_)_ + AvCcy)_ -F Aw(c_)_ ,1 . (9.42)
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The parameter/3 is generally limited to be no less than 0.05 and is frozen along

with ff_ as an aid to convergence.

The effects of the acoustic waves 15,,1 and 15,.2 as well as the shear wave 15,.5

can be plotted in (Au, Av, Aw)-space. Plots look the same as the grid-aligned

wave plots (figures 9.2(a), 9.2(b), and 9.4) except that the angles are now given

by 0_ and _b_. The shear wave lb,.3 is henceforward referred to as the (ff_ + _)

shear wave, in order to parallel the (0_ + _) shear wave from the two-dimensional

theory of Chapter 5. It causes a change of velocity in the ff_-direction, as pictured

in figure 9.5. Therefore the direction of propagation of the wave itself must be

90* to this. Unlike the two-dimensional case, however, in three dimensions there

are an infinite number of directions perpendicular to the _-direction. This is

tantamount to saying that the difference in velocity between two states L and R

(with no pressure difference) can be attributed to an infinite number of shear wave

types, each of which travels in a different direction perpendicular to ff_.

An illustration of this concept is given in figures 9.6(a) through (e). For

this example a first-order computation is assumed, where two neighboring cells

have velocities Vr. = (1,0,0), lYa = (1,1,0). Also, the ffa-direction is assumed to

be computed from these velocity values (i.e. they are not frozen from an earlier

time step). Figure 9.6(a) shows the geometry, including the velocity-difference

vector AI, 7 which indicates the direction fin. One type of shear wave that could

describe this difference in states is a "layer-type" shear, as pictured in figure 9.6(b).

Across this shear plane the velocity vector both rotates and lengthens. There is

no velocity component normal to the "layer-type" shear wave, so it is steady with

drift velocity 72s = 0.

Other interpretations of the velocity difference are shown in figures 9.6(c)

through (e). In each of these, the shear wave does have a drift velocity _2s. This

drift velocity is always normal to the r-_a-direction. It is a maximum in figure
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9.6(e), for the caseof the "2-D-type" shear wave. It is termed "2-D" because the

drift velocity is parallel to the plane defined by the velocity vectors l_r. and 17n

(with origins of the vectors at the same point). Across a "2-D-type" shear wave

the velocity vector lengthens, but there is no rotation. It should also be noted

that although the wave passes through both points L and R in figure 9.6(e), it is

assumed that L lies infinitesimally to one side of the wave and R to the other.

The initial strategy used to determine the direction of propagation of the

(ff._ + _) shear wave involved the grid geometry. The distance vector/)e, which

connects the cell centers of the neighboring states L and R (see figure 9.7), would

be compared to the plane defined by the velocity vectors. If/)g was at right

angles to the velocity plane, then a "layer-type" shear would be assumed. This

corresponds exactly to the situation pictured in figure 9.6(b). If/P0 lay parallel

to the velocity plane, then a "2-D-type" shear would be assumed. Anything

else would fall somewhere between the two types of shear. An easy method of

implementation would be to find the normalized projection of/)g onto the plane

which is perpendicular to the direction vector _._. This direction would then be

taken as the direction of shear wave propagation. The shear wave drift velocity

would simply be the component of (_2, 6, _b) taken in this direction.

However, this strategy has two undesirable properties. First of all, it brings

grid-dependency back into the solution. Second, and most importantly, it does not

allow for sharp capturing of steady three-dimensional oblique shear waves through

which the velocity undergoes rotation. For example, the steady-state type of

shear shown in figure 9.7 is not interpreted by this model as pictured; instead, the

difference in states is construed to be due to a different shear wave with non-zero

drift velocity. This misinterpretation adds dissipation to the computed solution

and smears the final steady-state result.

The best propagation direction for the (_ + _) shear wave seems to be the
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one that yields the lowest dissipation. This is given by the "layer-type" shear

waveinterpretation, which alwayshasdrift velocity us = 0 when _a is computed

every time step. When the direction _a is frozen, the drift velocity is no longer

necessarily zero, but it is generally very small. The unit normal direction vector

is computed as the direction perpendicular to both lYr_and _?a using the following

formulas:

a -- YLWR -- WLVR

b --- WLlt R -- _tLW R

(9.43)

C = ULVR _ _LUR

d = v/a 2 + b 2 + c2.

Then, if d # 0,

((%)s,(%)s,(c,)s) = d' " (9.44)

If d = 0 the arbitrary unit-normal direction (which is perpendicular to the _-

direction) is chosen:

((c=)s,(%)s,(c=)s) = (--cos0dsinCd,--sin0_tsin¢_t, cosCd). (9.45)

The drift velocity of the shear is then computed as the component of (_,_,zb) in

the ( ( % ) s , ( cy ) s , (c_ )s )-direction:

: + + (9.46)

Again, if the ffd-direction is not frozen, then ((c,)s,(%)s,(c,)s) is computed

from the same _TL, IYR that formed (fi,_),_b), and *2s turns out to be identi-

cally zero. However, if the ff_-direction is frozen from a previous iteration, then

t C I((%)s,(%)s,(cz)s) is frozen as ((C_)s,(_)s,(Cz)'s) and u k = _(c.)k + fi(%)_ +

@(cz)_ may have a finite value.

Finally, the components of the wavespeeds of all five waves in the grid-normal
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_t C t t

(9.47)

9.5 Stability Analysis

Following similar linearization procedures as for two dimensions, as well as

making the assumption that all ceils are cubes with edge length As, the three-

dimensional Euler equations can be written as

At Ou =
Ot -LU, (9.48)

where L is a matrix of difference operators. For first-order spatial differencing,

the Fourier transform of the right-hand side turns out to be:

_(-r) = - {_(n(o) + _(z(_))+ _(_(}))} b(@o)} (1 - cos(O)+

, o_ .(,), ¢,,.(j),
i(-_(n, ))sin_ (i)+ _kr, ),I(1-cos{(J))+

kOU' a ,/

(9.49)



168

For second-order differencing it is:

1 i 3 ./0_' .(i)\ (2sin_(i) lsin2_(i)) +_cos2¢ () + _) + z_-_(ng )) -

1

b('_J)) (-2c°s(J) + _c°s2(J)+ (9.50)

3) +i(O_ (ff(k)'_(2sin_(t)-lsin2_(t))] "\OU"' '/

The variable v is the CFL number, defined as

v= ,_(,_'_)+,,,(,,_,))+,,,(,_"))_-S'

• , =.(k)for cubic cells with edge length As. The _'), n-4gj) and ,_g are the direction-

vectors normal to the grid faces in the i, j, and k directions, respectively. They

are defined by the angles #g and _bg (see figure 9.1). In the present analysis, O(i) and

• ta(i) ,/,(i) +_'/2). The_(i) are prescribed for the direction a(i), then a(:)is taken as ,,,g ,_.g

vector _(g_)is taken as the vector perpendicular to the other two. Also, w(ff.(_i)),

w(ff(gJ)), and w(_(k)) are the maximum wave speeds Iq[ + h in each of the grid

directions. _(-L) is a complex-valued 5 x 5 matrix.

The three-dimensional flux Jacobian matrix is given by 0,_/0U =

0 (c.)_ (c_)_ (c,)_ 0 ]

I
(_,)9,-@, (_.)#-(c,),f_ (c,),_o+qg (_z)d,-(c_,)uf_,(c,),fI
(_.),:-_, (c.),,:,,-(c.),,fa(_),_,-(_.),fo(c.)g_+_, (_.!,f[

(9._2)

where, for brevity,

0,2- (_,),('rE-_)- f@g

_,3 ---(c,),(TE - _) - f@, (9.53)
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Also:
b-(2-7)

/-(7-I)

¢_7 -12 (_' + _' + _')'

and q9 is defined by (9.28).

(9.54)

[I)[ is the matrix that satisfies

k

For the 5-wave model in three dimensions, the elements of 1131 are given by:

where

(9.55)

and

(9.56)

=(7 - 1)6,

, 1i2
(9.57)

(Pk)1 =0 k=1,2,3

(9.58)

(PI)4 (c_ ' ' -- (P3)4 = (c=)_ - 1= )d(_h (_2),_ "'_ _'z/d_ Y/d

(Pk)5 : (Pl)k-t-1 "1_ -t- (p2)k+l _ -_- (V3)k-[-1 _,_ k = 1,2,3.
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In obtaining these elements of the ]15[ matrix, it is assumed that the wavespeed

of the (ff_ + _) shear wave is zero.

Although no three-dimensional computations using explicit time-marching

were done in this paper (only the modified implicit code CFL3D was used), a

linearized stability analysis for the explicit scheme is included here for complete-

ness. The analysis of the 4-stage time-marching scheme (6.18) is done in the same

way in three dimensions as in two. However, since there are now three perturba-

tion wavelengths _(i), _(j), and _(_'), each is cycled through 9 values from -or to

7r inclusive, for a total of 729 conditions. Five eigenvalues are obtained at each

condition. Since there are now more independent parameters to vary (the flow

direction _f, the grid-normal direction fig, and the wave-propagation direction

_ each are defined by two angles 0 and _b), it is even more difficult to perform

a thorough numerical analysis. Through extensive numerical experimentation, a

"worst-case" Fourier footprint (of all variations tested) has been determined for

first-order spatial differencing with the parameters M=100, O! = 0 °, _bI = 0 °,

= 0, 0 = 0°, = 0o,01= 22.5°, and = 22.5°.

Plotting this "worst-case" Fourier footprint along with the stability boundary

of (6.18) with 77= 0.15 in figure 9.8, it is seen that the maximum v that yields sta-

bility of the three-dimensional explicit scheme is about 1.55. This is slightly lower

than the stability limit for two dimensions. For second-order spatial accuracy, the

maximum v is about 0.77, as shown in figure 9.9. It is expected that for lower

Mach number flow these CFL number restrictions would be relaxed somewhat.

For three-dimensional implicit time-marching, the generalized eigenvalue pro-

blem

[_(M) + _(-L)] _'= g [_(M)] Z, (9.59)

arises, where 9 is any of the complex eigenvalues, and [_(M) + _(-L)] and [_(M)]
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are complex 5 x 5 matrices. For the three-factor approximately-factored left-hand

side, (9.14), the Fourier transform of M is given by:

._(M)= I + ?--_(_,'))(1- cos_"))+

, I + {_(a(,)) + _(a(j))+ _(_(_))}LI0U" '

{ [i
i(cg_i'¢_(t)l'_sin_(10]}kOU"' ']

when the approximate left-ha_d side Jacobians of the form given in Chapter 3 are

employed.

The stability characteristics are determined by cycling through 9 of each of the

frequencies _(i), ((j), and _(/*) from 0 to 27r. For first-order spatial differencing, the

same "worst-case" parameters as those used for the explicit analysis were found to

give the strictest stability limit out of the many variations tried. These parameters

are: M=100, Of = 0 °, 42! = 0 °, O_i) --- 00, ¢(i) = 0 o, 0_ = 22.5 °, and _b_ = 22.5 ° .

Variations in fl were found to make very little difference at these conditions. A

plot of the maximum eigenvalue, average eigenvalue, and smoothing factor is given

in figure 9.10. The maximum CFL number allowable turns out to be about 1.5.

For second-order spatial differencing, the same "worst-case" parameters were

again used, but this time /3 was found to have an effect on the results. When

/3 = 0, the analysis shows the scheme to be unstable except below v = 0.005.

This is shown in figure 9.11(a). When fl = 0.05, figure 9.11(b), the stability limit

increases to about 0.3.
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Based on the results from two dimensions, it is believed that these stability

restrictions for first and second-order can be relaxed somewhat for lower Math

number flows. It is also likely that the stability properties of the 5-wave model in

three dimensions can be improved dramatically by modifying the left-hand side

approximate Jacobians as described at the end of Chapter 6, as well as solving

block-pentadiagonal systems for second-order computations. These modifications

were not attempted in the current study.

9.6 Monotonicity Analysis

The monotonicity analysis for the three-dimensional Euler equations proceeds

much the same way as for the two-dimensional equations. The monotonicity

property is insured when

(0q'_+_J,k) < 0e.v. 0Ui+aj,k -

) > 0, (9.61)

where e.v.(.) represents "the eigenvalues of (.)", and the grid-normal n0, defined

by the angles (89,¢g), is varied over the full range of possible angles. The 5-wave

model can again be written in a form similar to (7.9), but it is assumed for this

analysis that the wavespeed associated with the (g_ + 2) shear wave is identically

zero (which would be exactly true if the wave-propagation direction was never

frozen). Therefore this shear wave is ignored in the analysis. All remaining waves

travel in the g_-direction, so the flux function per unit face-area can be written:

1
(_I_i+l,j,k + _i,j,k) -- _[_*] [k*]cos(_ -- (9.62)

There are only four waves which are assumed to travel in the ff_-direction, given

by (9.34), (9.35), (9.37), and (9.38). However, in order for all the matrices in

(9.62) to come out as 5 × 5 matrices, it is necessary to employ five waves in R*.
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Therefore the combined shear wave Rs of (9.38) is broken back into two shear

waves, chosen arbitrarily, which are perpendicular in (Au, Av, Aw)-space:

La(-_sinO_ + 9cosO_) J

(9.63)

Rsb =

0

-acosO_sin¢_
-asin0_sin_b_t

acosC,_t
(9.64)

where

^ ^ ' " ' gcos¢_.- vsmOdsm'¢, d +r_/ =-- --ztcos0dsln_b d ^ ' ' " ' (9.65)

The wavestrengths associated with each of these waves _.re:

fi_= :P(-a=sine_+ a_co_e_)
a. (9.66)

i'_Sb = -P(-Aucos0_sin_b_ - Avsin6_sin_b_ + Awcos_b_).

Hence the [R*] matrix is made up of Rt,2,4 from (9.34), (9.35), and (9.37), as

well as Rs,. and 15,.sb. The matrix of wavespeeds in the _-direction is [A*] =

diag(q_ + a, q_ - a, "' ^'qd,qd,_l'd), where 0_ is defined by (9.39). Making the same

assumptions as was done in Chapter 7, the linearized analysis gives

O@ i+ } ,.i,k

OU i-1 ,.i,k
1 0,_ 1115,.,] [A*]cos(_ 0_*20u/,_) - I - '_g)Ib-C_•

The derivative matrix in (9.67) is given by O_*/OUR =

(9.67)

(9.68)

, (9.69)
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where the variables f and _b are defined in (9.54), and:

i_ = -_sinO_ + _cosO_ (9.70)

The derivative matrix in (9.68) is given by (01'_*/0UL) = --(01_l*/aUR).

For the three-dimensional monotonicity analysis, the Math number M, flow

angles (0I,¢/), and/3 are chosen, then e_, ¢_, e_, and ¢_ are each varied inde-

pendently from -90 ° to 90 °, with incremental change of 7r/8. Eigenvalues are

computed for each condition. If they meet the criteria of equation (9.61), then

monotonicity is preserved at that condition. The results are plotted as allowable

Ig_ -- gll vs. Igg -- gll, for various ¢/,, where ¢/, is the angle between the plane

defined by the vectors (gg,_l) and the plane defined by the vectors (g_, gl). The

quantities within the absolute value signs indicate an angular difference between

two vectors. When plotted this way, results are independent of the flow vector gf.

A result is given in figures 9.12(a) through (c) for M = 3, and D = 1. Figure

9.12(a) shows results for the case when gp < 15 °. The allowable region for mono-

tonicity looks very similar to the two-dimensional region at these same conditions

(see figure 7.2(a)). It includes the grid-aligned wave model g_ = fig. Notice

that for the three-dimensional case, in contrast to two dimensions, the absolute

value of the angular differences are plotted so that only positive differences are

given. This is done because of the difficulty associated with assigning a positive

or negative angular difference in three dimensions. When 15 ° < gp < 30 °, the

plot of figure 9.12(b) results. Here, the monotone region is similar to that in fig-

ure 9.12(a) except that the grid-aligned model is no longer representable. When

30 ° < ¢/, < 45 °, the monotonicity region diminishes significantly in size, as shown

in figure 9.12(c). Finally, when 45 ° < ¢/, < 90 °, then no region is monotone,

according to this analysis.

A specific example is taken from this case. Referring to figures 9.12(a) through
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(c), when Igg -g]l "_ 75°, the allowable I_ -_11 goes from about 25 ° to 75 ° for

ep < 15 °, from about 25 ° to 65 ° for 15 ° < ep < 30 °, and from about 35 ° to 45 °

for 30 ° < ep < 45 °. A sketch is first drawn in figure 9.13(a) of the nl vector and

the fig vector, separated by 75 °, with the allowable g_ directions in the (gg,nl)-

plane (¢p = 0 °) indicated by shading. Next, in figure 9.13(b), the allowable ,_

directions in all three dimensions are indicated by including the results from the

cases when the (,_,,_f)-plane differs significantly from the (r_g,,_f)-plane.

A second case using M = 0.3, B = 1 is shown in figure 9.14 for ep = 0 °. When

ep > 0 °, there are no regions of monotonicity. This figure indicates (as did figure

7.2(b) for two dimensions) that only the grid-aligned method is monotone at these

subsonic conditions. However, it is believed that this constraint, as well as the

constraints imposed upon supersortic flows, can be relaxed somewhat in practice

in an effort to reduce spurious oscillations near discontinuities while still maintain-

ing much of the sharper resolution afforded by the 5-wave model. Although an

empirical limiting method has not been devised for three-dimensional flow due to

its inherent complexity, it is believed that a successful method could be patterned

much the same as the method currently employed for two dimensions.
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CHAPTER 10

THREE-DIMENSIONAL EULER RESULTS

All three-dimensional results are obtained using the implicit approximate-

factorization algorithm CFL3D [32]. Only the flux function is varied in order to

obtain either grid-aligned or grid-independent results. The CFL numbers chosen

for stability for the 5-wave model are based on the theoretical analysis of Chapter

9. No wave-propagation-direction limiting procedure has been developed for the

three-dimensional 5-wave model for improving its monotonicity properties.

10.1 Ramp Flow in a Channel

The geometry for the ramp flow in a channel with inflow Mach number of 2.8

is shown in figure 10.1. The domain is 1.8 units long by 0.72 units high by 0.5

units wide. An oblique ramp at the lower wall starts at 0.2 units with an angle of

12" at one side and at 0.5 units with an angle of 18 ° at the other side. This case

was first computed by Parpia [33].

Computations are performed on a 41 x 17 x 17 grid. Two i = constant planes

and one k = constant plane from this grid are shown in figures 10.2(a) through

(c). Simple reflection boundary conditions are applied at the four walls, inflow is

taken as freestream, and outflow conditions are obtained from the interior of the

grid using uniform first-order extrapolation.
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First-order computational results using the grid-aligned method are given

in figure 10.3. Pressurecontours are given in three i = constant planes, one j =

constant plane, and one k = constant plane. Also, nondimensional pressure values

are given along three k = constant lines in the i = 1 plane in figure 10.3(f). Results

of the 5-wave model are obtained by restarting the grid-aligned results with the

wave-propagation directions frozen. These 5-wave model results are given in figure

10.4. Shock waves are resolved with far fewer interior points using this method.

Second-order results using the grid-allgned model and the 5-wave model are

given in figures 10.5 and 10.6, respectively. In this case, the 5-wave model does

not improve the shock resolution to any noticeable extent over the grid-aligned

model. Also, results are slightly more oscillatory. Hence for an oblique shock-type

flow in three dimensions, as in two dimensions, the grid-independent model does

not seem to be worth the additional effort when second-order spatial accuracy is

employed.

10.2 Oblique Supersonic Shear

An oblique supersonic shear case is computed within a cube 1.8 units on a

side using a Cartesian 17 × 17 × 17 mesh. For the particular case considered, the

velocity undergoes both an increase in magnitude as well as a rotation through

the shear layer. The shear layer itself is assumed to lie along one diagonal of the

cube, as shown in figure 10.7. Below the layer the velocity components are u = 3,

v = 3, and w = 3, while above the layer they are u = 4, v = 2, and w = 4. There

is one transition ceU where u = 3.5, v = 2.5, and w = 3.5. There is no pressure

or density change across the shear layer. The boundary conditions are applied as

follows: at inflow the exact values are specified, and at outflow the variables are
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obtained from the interior using uniform first-order extrapolation.

When/3 is not limited to be greater than 0.05, the 5-wave model preserves the

exact solution when the initial condition is the exact solution. This exact solution

is presented in figures 10.8 through 10.10 at an i = constant, a j = constant, and

a k = constant plane, respectively. Shown are in-plane Mach number contours

and velocity vectors (the velocity component out-of-plane is ignored).

A first-order computation using the grid-aligned model gives the results shown

in figures 10.11 through 10.13. The shear layer is seen to spread a significant

amount through the domain. When restarted from the grid-aligned solution, the

5-wave model (with fl now limited to be no less than 0.05 to improve stability)

gives the results shown in figures 10.14 through 10.16. For this case the wave-

propagation directions are computed once at restart, then remain frozen for the

remainder of the computation. The shear layer is preserved with relatively few

interior points using the 5-wave model. Although not shown, the pressure field is

computed in error from the exact solution (of no pressure change at all through

the shear layer) by about 23% using the grid-aligned model, while the 5-wave

model solution is only about 5% in error.

In-plane Mach contours from a second-order computation using the grid-

aligned model are given in figure 10.17, while second-order 5-wave model results,

restarted from the first-order grid-aligned solution with the wave-propagation di-

rections frozen, are given in figure 10.18. Even with second-order spatial accuracy

the 5-wave model gives significantly higher shear-layer resolution than the grid-

aligned model. The pressure field, not shown, is also computed more accurately.

It is about 5% in error from the exact solution, while the grid-aligned result is

about 10% in error.
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10.3 Transonic Flow Over a Wing

Transonic flow is computed over the F-5 wing at the conditions M = 0.95,

a = 0 °. This wing has a root chord to tip chord to wing span ratio of 1.027 : 0.316

: 1.0. A 97 x 17 x 17 C-H grid is used, with maximum outer boundary extent of

about 20 wing spans, and average normal spacing at the body of 0.0118 wing spans.

The grid extends about one wing span past the wing tip, and there are 560 cells

on the wing surface. A cut-a-way view of this grid, with the wing delineated by a

heavy line, is shown in figure 10.19. Standard reflection boundary conditions are

employed at the wing surface, and subsonic inflow/outflow boundary conditions

(as described in section 8.1.5) are employed at the farfield boundaries.

Pressure contours at three i = constant sections over the wing and pressure

contours on the upper surface of the wing for a first-order computation using

the grid-aligned model are shown in figure 10.20. Pressure values are plotted in

increments of 0.02. Since the shock waves over the wing are more or less aligned

with grid faces, the grid-aligned method captures these very sharply. Entropy

contours at the same locations (plotted in increments of 0.002) are shown in figure

10.21.

The 5-wave model is run with first-order spatial accuracy by restarting the

grid-aligned result with the wave-propagation directions frozen. Pressure contours

are given in figure 10.22 and entropy contours are given in figure 10.23. The 5-wave

model does not improve the shock resolution for this case. In fact, although the

shock resolution is similar for both models over much of the wing, the 5-wave model

actually shows worse resolution near the wing root. The reason for this is most

likely due to the current strategy for freezing/3 and the propagation directions

after the first iteration. Since the shocks are nearly aligned with the grid faces,
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the grid-aligned model is already optimum for capturing them accurately. Any

small difference in the wave-propagation direction and/or any numerical value of

/3 lower than 1.0 near the shock waves contributes to a degradation of the result.

However, similar to the two-dimensional airfoil results, the 5-wave model also

yields lower entropy generation over the wing than the grid-aligned model. (An

"exact" solution would give no entropy generation except through the shocks.)

The maximum values generated on the wing upper surface (figures 10.21(d) and

10.23(d)) are 0.0393 for grid-aligned and 0.0284 for 5-wave.

As this wing case demonstrates, the 5-wave model cannot give improved

shock-resolution over the grid-aligned method when shock waves are aligned with

grid-faces. However, as in two dimensions, it does produce lower numerically-

generated entropy values near the body surface when flrst-order spatial accuracy

is employed. Second-order computations are not performed for this case. However,

it is expected that results would follow the trends exhibited for two-dimensional

airfoil flow, and the 5-wave model would show no discernible advantage over the

grid-aligned model.
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a) i=2Plane

b) i=5Plane

Figure 10.20: F-5 Wing, Pressure Contours, First-Order, Grid-Aligned
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d) Wing Upper Surface

Figure 10.21: F-5 Wing, Entropy Contours, First-Order, Grid-Aligned
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a) i=2Plane
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b) i=5Plane

Figure 10.22: F-5 Wing, Pressure Contours, First-Order, 5-Wave
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c) i=9Plane

d) Wing Upper Surface

Figure 10.22: Concluded
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Figure 10.23: F-5 Wing, Entropy Contours, First-Order, 5-Wave



CHAPTER 11

CONCLUSIONS

The main object of the current research is to introduce and explore a grid-

independent approximate R.iemann solver for use with the Euler and Navier-Stokes

equations. The primary reason for attempting a grid-independent method is to

model the physics of the true two or three-dimensional flow more accurately. Most

current multidimensional flow solvers that employ a Riemann solver implement

it in a "direction-split" manner, i.e. one-dimensional theory is applied in each

grid direction separately. In reality, however, the waves can travel in infinitely

many directions. Constraining them to the grid directions is inconsistent with the

physics of the flow and can result in improper interpretation of waves that are not

aligned with the grid.

The current grid-independent model utilizes the velocity-difference direction

as the direction of propagation of most of the waves, with an additional shear wave

propagating 90 ° to this. Use of the velocity-difference direction as the dominant

direction allows for more accurate interpertation of both shock and shear waves

when they lie oblique to the grid. The direction is generally frozen during a

computation to eliminate nonlinear feedback in the solution and aid convergence.

Simple left and right states obtained by interpolation along grid lines are used

at each interface as the initial conditions for a Pdemann problem. The difference

in states is decomposed into a series of five waves, and the standard upwind flux

211
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formula is employed to determine the flux at each face. It is shown in the derivation

of the 5-wave model that the standard flux formula is the "best" within a certain

class of formulas at reproducing the flux given by two rotated Riemann solvers.

A stability analysis of the 5-wave model in conjunction with the two-dimen-

sional Euler equations, advanced in time using explicit time-marching, shows that

some modes of the Fourier footprint contain eigenvalues that lie on the imaginary

axis. Hence the stability boundary of the time-marching scheme must include a

finite portion of the imaginary axis as well. Since only multistage schemes can

satisfy this requirement, a four-stage scheme is chosen. It is stable up to CFL

numbers of about 1.75 for first-order spatial accuracy and 0.87 for second-order,

although in practice these restrictions can generally be relaxed somewhat.

An implicit approximate-factorization algorithm is shown to be stable only

up to a CFL number of about 2.5 for first-order and 0.3 for second-order when

the 5-wave model is employed on the right-hand side and first-order accurate

grid-aligned approximate Jacobians are employed on the left-hand side. Again

these CFL numbers are somewhat overrestrictive for most practical applications.

When a grid-independent left-hand side approximate Jacobian is employed, first-

order computations can be made unconditionally stable. Using a linearized anal-

ysis, second-order computations are shown to be unconditionally stable if block-

pentadiagonal systems (as opposed to tridiagonal systems) are solved with appro-

priately chosen grid-independent approximate Jacobians. Maximum CFL num-

bers of about 100 can be attained in practice with this strategy, although the

optimum CFL number for convergence generally lies between 2 and 6.

The monotonicity of the 5-wave model in conjunction with the two-dimen-

sional Euler equations has also been investigated. Using a linearized analysis, it is

shown that strictly only the grid-aligned first-order method is monotone. However,

it is shown that the oscillations that occur near discontinuities can be reduced in
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magnitude to acceptablelevelsfor a wide variety of problemsby limiting the wave-

propagation directions of the 5-wavemodel according to a strategy suggestedby

the linearized analysis. This gain in monotonicity doesresult in the lossof some

of the high resolution of oblique shockand shear waves,although the resolution

is still generally greater than results using the grid-aligned scheme.

Two-dimensional results obtained using the 5-wavemodel indicate that the

method is usually worthwhile for first-order computations. Flows with oblique

shockor shearwavesarecaptured moresharply than results using the grid-aligned

method, even when the 0_-limiter is employed to reduce oscillations. Also, sub-

sonic Euler airfoil flow computations show significantly reduced entropy generation

over the airfoil surface, resulting in better drag prediction. The 5-wave model is

about 1.2 times more costly per iteration than the grid-aligned model when no

0_-limiting is employed, and about 1.5 times more costly when it is. Hence the

cost penalty is not severe considering the increased accuracy of the first-order

solutions.

When second-order spatial accuracy is employed, the small increase in accu-

racy attained by the 5-wave model is generally not worth the added drawbacks. In

particular, oblique shock waves are resolved only slightly more sharply than when

using the grid-aligned method, and there is very little decrease in the numerical

entropy generation for a subsonic airfoil computation. These facts, taken in com-

bination with a propensity for increased oscillatory behavior near discontinuities,

makes the 5-wave model an unattractive alternative to the grid-aligned model in

general. The only notable exceptions to this conclusion are found in the pure

supersonic oblique shear wave computation and the separated viscous airfoil flow

computation. In the first case, the 5-wave model still gives significant improved

resolution of the shear wave over results using the grid-aligned model. In the

second case, numerical pressure oscillations evident in the separated region over
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the airfoil upper surfaceusing the grid-allgned model are dramatically reduced

by the 5-wavemodel, which properly interprets the oblique shear wavespresent

in the flowfield. Hencein specializedcasesinvolving oblique shear waves,the 5-

wave model in a second-orderaccurate computation can be worth the additional

expense.

In the arena of second-orderviscous flow computations, it should be noted

that onvery coarsegrids the 5-wavemodel cando a muchworsejob than the grid-

aligned model at resolving the boundary layer (for flat-plate flow) and predicting

surfacepressurevalues(for airfoil flow). The two modelsapproachthe sameresults

as the mesh is refined, however, so as long as a fine enough grid is employed the

5-wave model will be accurate in these areas. This problem is particularly evident

in the viscous separated airfoil flow case, where the 5-wave model result over the

coarsest (65 × 25) grid looks better than the grid-aligned result, since the pressure

distortions in the fiowfield have been reduced. However, the lift predicted by

the 5-wave model is about 120% too high due to its inaccurate surface pressure

predictions. The grid-aligned model, plagued as it is with pressure deviations in

the separated region above the airfoil, is only high in its lift prediction by about

8%.

The 5-wave model is also extended to three dimensions. The velocity-differ-

ence direction is again chosen as the primary wave propagation direction, and the

difference in states can still be described by a series of five waves. One of these

waves is a shear wave which is assumed to propagate normal to the plane spanned

by _TL and VR. Hence the velocity of this shear wave is identically zero when the

wave propagation directions are not frozen. Oblique shear waves through which

the velocity undergoes a change in magnitude and/or undergoes a rotation can be

captured sharply by this method.

A stability analysis of the 5-wave model in three dimensions gives results
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similar to those of the analysis in two dimensions, only with slightly lower stability

limits. An explicit four-stage time marching scheme is stable up to CFL numbers

of about 1.55 for first-order spatial accuracy and 0.77 for second-order. An implicit

approximate-factorization algorithm with a first-order grid-aligned approximate

left-hand side is stable up to a CFL number of about 1.5 for first-order and 0.3

for second-order.

The monotonicity properties in three dimensions are also investigated using a

linearized analysis. Again, in a strict sense, only the grid-aligned first-order model

turns out to be monotone. It is believed that a relaxation of this restriction on

the wave-propagation direction similar to that in two dimensions can be employed

in order to improve the monotonlcity properties of the 5-wave model, but this

has not been attempted in this study due to the complexity inherent in three

dimensions. In any case, the extra degree of freedom in three dimensions seems

to relieve some of the oscillation problems present in two dimensions when the

5-wave model is used.

Conclusions from three-dimensional Euler test cases run along similar lines to

those from two dimensions. For a ramp flow with oblique shock waves, the 5-wave

model improves the shock resolution considerably in a flrst-order computation,

making the model worth the effort and additional expense. However, a second-

order computation shows very little difference from a grid-aligned computation.

This fact, taken in conjunction with the fact that the 5-wave model costs more and

yields slightly increased oscillatory behavior over the grid-aligned method, makes

the 5-wave model impractical for use with this type of problem using second-order

spatial accuracy.

An oblique supersonic shear wave, on the other hand, is resolved better using

the 5-wave model for both first and second-order accurate computations. This is

similar to the result in two dimensions. Extrapolating from the two-dimensional
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results, then, it is likely that the 5-wave model would also do well for a three°

dimensional separated viscous flow computation similar to the NACA 0012 airfoil

case. Three-dimensional viscous flow computations were not attempted in this

study.

A first-order Euler computation performed over an F-5 wing using the 5-wave

model produces lower entropy values over most of the the wing surface than the

gfid-aligned model. Since the shock waves for this case are aligned with grid

faces for the most part, the 5-wave model does not improve their resolution over

the grid-aligned model. Second-order computations on this configuration were

not performed. However, results are expected to be similar in nature to the two-

dimensional results, with little to no improvement in numerical entropy generation

using the 5-wave model over the gfid-aligned model.

Overall, for both two and three-dimensional computations, the 5-wave model

is seen to be worth the additional effort only for first-order spatially-accurate

computations, or computations involving only oblique shear waves. In general,

inviscid flows with shock waves and/or flows with no shock or shear waves at all

are better computed using the gfid-aligned wave model when accuracy greater

than first-order is desired. The additional expense and oscillation-prone nature of

the 5-wave model makes it unattractive for use in such cases.

Despite its shortcomings, the 5-wave model can be thought of as a "step in the

fight direction" toward modeling the multidimensional flow physics of the Euler

and Navier-Stokes equations more accurately than the grid-aligned model. Future

work may best be focused on removing the inconsistency in the model (discussed

in section 5.4) that does not allow it to reduce to the grid-aligned model when

01 = 09 unless _ = 1. Although theoretically it seems that this would be a

desirable property to meet, it is not known what the ramifications of not meeting

it are. Possible avenues of investigation toward eliminating the inconsistency,
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while still maintaining sharp resolution of oblique shear waves, might include

experimentation with different types and directions of waves as well as varying

the flux formula itself. Further efforts toward improving the grid-independent flux

function might focus on a different type of limiting to improve the monotonicity

properties of the method. Perhaps by limiting the left and right input states

to the Riemann problem, rather than the wave-propagation directions, greater

resolution of oblique waves might be maintained for both first and second-order

accurate computations. Also_ the extension to limiting in three dimensions might

be more straightforward than the current angle-llmiting procedure.

The current research has purposefully begun with the assumption that only

the left and right states at each interface, obtained by interpolation along grid

lines, are known at the beginning of the flux function'computation. It is then

up to the model to make the most of these input states, and infer from them

the types and directions of waves likely to be present. This assumption was

made to keep the cost of the grid-independent flux function as low as possible.

By ignoring surrounding flowfield data, no complex interpolations are required

to obtain gradients in non-grid-oriented directions. However, perhaps this initial

assumption was unrealistic, and the inclusion of some multidimensional input

states might be helpful or even necessary to improve the robustness of the model,

particularly for second and higher-order accurate computations.
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APPENDIX A

DERIVATION OF B FOR THE MINIMUM-PATHLENGTH

AND MINIMUM-AREA MODELS

A.1 Minimum-Pathlength Model

As discussed in Chapter 5, the right state R lies inside the acoustic cone

emanating from the origin when

(Ap) 2 >_[_a(&ucos0a + Avsin0a)] 2, (A.1)

and the difference in states is described by two acoustic waves and an entropy

wave. When 8a is frozen as 8_, then the method is modified as follows. If the

projection (R') of the right state R onto the 8_-plane lies inside the acoustic cone,

then two 8_ acoustic waves and an entropy wave are used, along with the necessary

8_ shear wave to connect B. with R I. The condition becomes:

(_p)_ > [_a_q_]2, (A.2)

where Zkq_ is defined as

/Xq_ = AucosO_ + AvsinO_. (A.3)

The wavestrengths _k must be determined which satisfy

(AA)nW= _P_,
k=l
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where the +0_ acoustic, -6_ acoustic, entropy, and 8_ shear are given by:

, & , "/ T-hcosSd, sinSa,h2

J

a , a .., ^21T152 = l,--_cosaa,--_slnva,a ]

P3 = [1,0,0,0] T

154=[0, a" ' acosO_,o] T

These strengths turn out to be:

2& 3

-- 2a l'Aqd

b (a_A._Av)
(-Ausin0_t + Avcos0_)

(A.5)

(A.6)

Similarly, the condition for which one O_ acoustic, a (0_ + _) shear, and an

entropy wave (along with the necessary 8_ shear wave) are used is

(AP) 2 < [,SaAq_]2. (A.7)

This indicates that the projection of the right state R onto the 8_-plane lies outside

the acoustic cone. Again wavestrengths must be determined such that (A.4) is

satisfied, but this time the waves are

151= [1, a+_cos0 a,' +pSin0_t, ti2] T

h , h , ]T_: o,-_cosO_,-_i_o_,o]
P3 = [1, O, O, O]T

P _ cosOa, 0 ,

(A.8)

where the + or - acoustic wave is chosen depending upon which minimizes the

pathlength in (Au, Av, Ap)-space. The strengths turn out to be:

Aa

b (]'apt av)
(-ausin0_ + _cos0_)

(A.0)
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The equations (A.6) and (A.9) can be combined as the 5-wave model described

in Chapter 5, with strengths

_ +/3_q_

26, 2

(/3- 1)_Aql
b (_2A._ _,)

(-AusinOl + AvcosOl)

(A.10)

for the +01 acoustic, -01 acoustic, (01 + _) shear, entropy, and 01 shear, respec-

tively. The variable/3 is given by

/3 = min[l(I, 1], (A.11)

where ( is defined as

When (A.2) is true,

( - Ap/(_) (A.12)

[([-> 1, (A.13)

so/3 = 1 and the strengths (A.6) are recovered. When (A.7) is true,/3 is assigned

the value of (. If Ap and Aql both have the same sign:

('/2 =0 (A.14)

h3 - ap _ ,
a2 _ Aqd

and (A.9) with the +acoustic wave is recovered. If Ap and Aql have opposite

signs:

fi_ Ap
h2 (A.15)

same, as given by (A.10). With this method, the proper acoustic wave is always

chosen such that the (81 -4- _) shear wavestrength fia is minimized.

_a -- Ap _ ,
a2 :aAqd

and (A.9) with the -acoustic wave is recovered. In both cases _/4 and f/s are the
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Notice that the wave patterns change in a continuous fashion as _ goes

through 1.0, as shown in figure A.I.

A.2 Minimum-Area Model

As discussed in Chapter 5, the minimum-area model picks the path in (LXu,

LXv, LXp)-space that lies, in a sense, closest to the straight line connecting L and

R. It does this by minimizing the area between the paths and the straight llne.

When 8d is frozen as 0_, this criterion is modified slightly for simplicity. A 8_

shear wave is used to connect the right state R with R _, its projection onto the

8_-plane. Then +0_ acoustic, -8_ acoustic, and (8_ + _) shear waves are chosen

which minimize the area between the wave paths and the straight line connecting

L and R _ in (Au, Av, Ap)-space. (The entropy wave, as always, is present but

only contributes to changes in density. Its strength is always _'ls = Ap- Ap/_t2.)

When inequality (A.2) is true, two acoustics and no (01 + _) shear wave

minimize the area. This is identical to the minimum-pathlength model and hence

corresponds to _ = 1 in (A.10). When (A.7) is true, some combination of all

three waves minimizes the area. The order in which the waves are taken makes

a difference in the outcome. In the present derivation they are always taken

such that the first wave (from L) is an acoustic that points away from R _ in

(Au, Av, Ap)-space. The second wave is the (_ + _) shear, and the third wave

is the remaining acoustic. This strategy is illustrated in figure A.2. The type

of acoustic that leaves L depends on the sign of Ap and the sign of Aq_t. If Ap

and Aql have the same sign, a -61 acoustic leaves L, while if Ap and Aql have

opposite signs, a +61 acoustic leaves L.

In this derivation it is assumed that the waves have strengths given by (A.10),
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L

Ap // IA p // l Ap _, -/

/' _ R' / jm R' / DKz"

// (<1 ¢>1

L L Aq_-direction

Figure A.I: Wave Patterns for Minimum-Pathlength Model

Ap

(0_ + [) shear

_.r

:kAq_-direction

Figure A.2: Minimum-Area Model
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where _ is unknown. An expressionfor /9 is then determined that gives the

minimum area. Figure A.3 is the same as figure A.2 with some relevant distances

labeled. It is assumed for now that Ap and Aql are both positive. Hence the first

wave to leave L is a -81 acoustic. It turns out that the end result for 15 is the

same regardless of the signs of Ap and Aql.

From the geometry of figure A.3, the areas of the two triangles in the figure

are
1

1

V_ = -_ Az4Ap_.

(A.16)

Since it is known (from (A.9)) that an acoustic wave which causes a change in

pressure Ap has an associated strength Ap/& 2, Apl can be found since the strength

of the -acoustic wave is known:

Ap
(A.17)

Therefore

APt Ap 1 ,
- 2 2 _[_ztAqd" (A.18)

The changes in primitive variables caused by a -4-01 acoustic wave are:

6p 6u ,%

h2 _ + at°s01 _ 4- &sin0------_d. (A.19)

From geometry, this can also be written as

6p = 4-(Sucosel + 5vsinel)"
#a

(A.20)

This means that the distance Az_ is equal to Ap_/([,a), or

Ap 1-A '
Az_ - 2_a _ qd. (A.21)

Furthermore,

Ap2 =Ap-Apl = Ap 1
T + 2 fl'baAqd (A.22)
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A¢2 Ap2 Ap 1 ,
- _a 2_,_ + 2 _3Aqd" (A.23)

The distance Az3 is found using the rule of similar triangles

Ax3 Apl (A.24)
Aq_ Ap '

or

1,:X, 1
Ax3 = _ qd 2ApB/_z(Aq_)_" (A.25)

_12 Ap Ap 2 (A.29)
- 2h2 2/ih3 Aq_

1:13 -- AP2 _ Aq_l
_h3Aq_ h

Ap Ap 2

Then Az4 is simply

Az4 = Aq_- Az2 - Az3

1 , Ap ^^
+/3 { 2__p(Aq_)2 1 A ,'1 (A.26)

_ 2Aqd

Now, the total area VT = V1 + 172 is found by plugging in the appropriate expres-

sions into (A.16). The final result is

VT" = IApAq_ _ {1ApAq:} _' { :'a' "_ + _-_&p (Aq_)3 _ . (A.27)

To find the value of f_ for which lit is minimized, solve for/9 when cOVT/c9_ = 0:

{'AP/(Pa)) (A.28117=\ Aq_

Also, O VT/O 2 = D2a (Aq' )a/(2Ap) > 0 for Ap > 0 and Aq_ l > 0, so this/3

indeed represents the minimum area.

It turns out that the expression for total area is given by (A.27) when Ap

and Aq_ have the same sign, but is given by the negative of (A.27) when they

have opposite signs. Therefore (A.28) is the correct expression for 1%' outside of

the acoustic cone regardless of the sign of Ap and Aq_l. It gives strengths of
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for the +0_ acoustic,-8_ acoustic,and (0_ + _) shear, respectively.

The resultsfor/3 for the two cases of R l outside or inside the acoustic cone

can be combined as:

/3= rnin [(2,I] . (A.30)

where ag_n f is given by (A.12). The wave patterns represented by this model

change in a continuous fashion as ( goes through 1.0, as shown in figure A.4.
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Azs

L , _ Aq_ I
|- ,

Figure A.3: Geometry of Minimum-Area Model

Ap
/

/

<1

L I., Aq_t-direction

Figure A.4: Wave Patterns for Minimum-Area Model
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APPENDIX B

DERIVATION OF THE COMBINED SHEAR-WAVE VECTOR
FOR THE 3-D EULER EQUATIONS

The eigenvaluesof the linearized systemof three-dimensionalEuler equations

can be written as

)`1 = Og+a

)`_= 0_-a (n._)

)`3= )`4= )`5= Og,

where 0g is defined by (9.28). The eigenvector for the conserved-variable form of

the equations associated with )`z is given by 15,.z in (9.23), while the eigenvector

associated with ),2 is given by 15,.2 in (9.24).

There are three linearly independent eigenvectors associated with the eigen-

value qg that form a basis for its eigenspace. One, an entropy wave, is denoted by

equation (9.26). The other two are shear waves that cause a change in the velocity

with no change in density or pressure. Any two shear vectors that are orthogonal

when written in primitive-variable form and cause a change in velocity normal to

the fig-direction can be chosen. It turns out that the end result for the combined

shear vectors is the same regardless of the choice. One set is

[ _2°0, ]l_sh*arl = / aeOoSOg

I.a(-_sinOg + _cosOg)

(B.2)
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0

-,_cosSgsinCg

-hsinSgsin¢ 9

acos¢ 9
-_2cosSgsinCg - _3singgsinCg + z5cos¢9)

(B.3)

where the angles Og and Cg define the grid-face normal direction as pictured in

figure 9.1.

The strengths of each of the five waves can be obtained by solving

AU = E _kl_k (B.4)
k

for the _k. Only the shear-wave strengths are necessary in the present derivation.

They are given by:

(--Ausin#g + Avcos#g)fishearl _-

a (8.5)

_,_e_r2 = -z (--AucosOgsinCg - Avsin0gsin¢_ + AwcosCg).
t_

The combined action of the two shear waves in the linearized system can be

replaced by a single shear wave whose strength and direction are a function of the

difference in states. An expression for this new shear vector can be found from:

fi.,wR.,w = h,h.,1R, h,_,l + h,h.,,_h,_,_. (B.6)

Combining terms, one obtains:

_new Rnew

0

-#(Ar_)_
-#(/x_,)9

__(_(_). + _(_). + _(A_),}

where the (Ari)o's are defined by

(At2). -- (c_)9(c.)#Au + ((c_)_ - 1)Av + (%),(c.),A.w

(A_), - (c.),(c.),A_ + (c.),(c,),a., + ((c.),=- I)A_.

(8.z)

(B.8)
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The c_, %, and c_ are defined in spherical coordinates in (9.20). In order that the

vector 15,.new be somewhat similar in form to the two vectors from which it was

derived, _new is taken to be _//_; the shear vector l_new then becomes:

0

-a(Arl) 

-a(Ar3) 
(B.9)

(AT'I)g = Aqg(Cz)9 - Au

(Ar2)g = Aqg(%)g -- Av (B.10)

= -

Hence each of these terms represents the difference between the x, y, or z com-

ponent of the velocity difference along the grid-normal and the corresponding

component of the whole velocity difference.

Notice that Aqg = (c_)gAu -+-(c_)gAv -F (c_)gAw represents the component

of the velocity-difference AV in the wave-propagation direction (normal to the

grid face), so (B.8) can be rewritten as



BIBLIOGRAPHY

231



232

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Is]

[9]

Van Leer, B., "On the Relation Between the Upwind-Differencing Schemes

of Godunov, Engquist-Osher, and Roe," NASA Langley ICASE Rept. 81-11,
1981

Liepmann, H., Roshko, A., Elements of Gasdynamics, John Wiley and Sons,

Inc., New York, 1957, pp. 79-83

Godunov, S., "Finite Difference Method for Numerical Computation of Dis-

continuous Solutions of the Equations of Fluid Dynamics," Matematicheskii

Sbornik 47, No. 3, 1959, p. 271, Cornell Aeronautical Lab (CALSPAN)
translation

Roe, P., "Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes," J. Comp. Phys., Vol. 43, 1981, pp. 357-372

Raithby, G., "Skew Upstream Differencing Schemes for Problems Involving

Fluid Flow," Comp. Meth. in Appl. Mech. and Eng., Vol. 9, 1976, pp.
153-164

Hassan, Y., Rice, J., Kim, J., "A Stable Mass-Flow-Weighted Two-Dimen-

sional Skew Upwind Scheme," Num. Heat Transfer, Vol. 6, 1983, pp. 395-408

Lillington, J., "A Vector Upwind Differencing Scheme for Problems Involving

Significant Source Terms in Steady-State Linear Systems," Int. J. Numer.

Methods Fluids, Vol. 1, 1981, pp. 3-16

Jameson, A., "Iterative Solution of Transonic Flows Over Airfoils and Wings,

Including Flows at Mach 1," Comm. Pure and Appl. Math., Vol. 27, 1974,

pp. 283-309

Jameson, A., "Transonic Potential Flow Calculations Using Conservation

Form," Proceedings of 2nd Computational Fluid Dynamics Conference, June

1975, pp. 148-161

[10] Moretti, G., "The A-Scheme," Computers and Fluids, Vol. 7, 1979, pp. 191-
2O5

[11]

[12]

[13]

Verhoff, A., O'Neil, P., "A Natural Formulation for Numerical Solution of the

Euler Equations," Tech. Rept MCAIR 83-031, McDonnell Aircraft Company,

1983

Goorjian, P., "A New Algorithm for the Navier-Stokes Equations Appied to

Transonic Flows Over Wings," AIAA 87-1121-CP, 1987

Obayashi, S., Goorjian, P., "Improvements and Applications of a Streamwise

Upwind Algorithm," AIAA 89-1957-CP, 1989



233

[14] ColeUa,P., "Multidimensional Upwind Methods for Hyperbolic Conservation
Laws," J. Comp. Phys.,Vol. 87, 1990, pp. 171-200; also: Lawrence Berkeley

Laboratory Preprint LBL-17023, 1984

[15] Van Leer, B., "Multidimensional Explicit Difference Schemes for Hyperbolic

Conservation Laws," NASA CR 172254, 1983

[16] Davis, S., "A Rotationally Biased Upwind Difference Scheme for the Euler

Equations," J. Comp. Phys., Vol. 56, 1984, pp. 65-92; also: NASA CR

172179, 1983

[17] Roe, P., "Discrete Models for the Numerical Analysis of Time-Dependent

Multidimensional Gas Dynamics," J. Comp. Phys., Vol. 63, 1986, pp. 458-

476; also:NASA CR 172574, 1985

[18] Kroner, D., "Numerical Schemes for the Euler Equations in Two Space Di-

mensions Without Dimensional Splitting,"Notes on Numerical Fluid Me-

chanics, Vol. 24, ed: Ballman _z Jeltsch,Vieweg, 1988, pp. 342-352

[19] Struijs, R., Deconinck, H., DePalma, P., Roe, P., Powell, K., "Progress on

Multidimensional Upwind Euler Solvers for Unstructured Grids," AIAA 91-

1550-CP, 1991 (to appear)

[20] Hirsch, Ch., Lacor, C., "Upwind Algorithms Based on a Diagonalization of

the Multidimensional Euler Equations," AIAA 89-1958, 1989

[21] Powell, K., Van Leer, B., "A Genuinely Multi-Dimensional Upwind Cell-

Vertex Scheme for the Euler Equations," AIAA 89-0095, 1989

[22] Powell, K., "Towards a Genuinely Multi-Dimensional Upwind Scheme," pre-

sented at CFD Lecture Series at the Von Karman Institute, 1990

[23] Giles, M., Anderson, W., Roberts, T., "The Upwind Control-Volume Scheme

for Unstructured Triangular Grids," NASA TM 101664, 1989

[24] Levy, D., Powell, K., Van Leer, B., "An Implementation of a Grid-Indepen-

dent Upwind Scheme for the Euler Equations," AIAA 89-1931-CP, 1989

[25] Parpia, I., Michalek, D., "A Shock Capturing Method for Multidimensional

Flow," AIAA 90-3016-CP, 1990

[26] Dadone, A., Grossman, B., "A Rotated Upwind Scheme for the Euler Equa-

tions," AIAA 91-0635, 1991

[27] Parpia, I., "A Planar Oblique Wave Model for the Euler Equations," AIAA

91-1545-CP, 1991 (to appear)

[28] Anderson, D., Tannehill, J., Pletcher, R., Computational Fluid Mechanics

and Heat Transfer, McGraw-Hill Book Company, New York, 1984, p. 484

[29] Barth, T., "Analysis of Implicit Local Linearization Techniques for Upwind

and TVD Algorithms," AIAA 87-0595, 1987.



234

[30] Anderson, W., Thomas, J., Van Leer, B., "Comparison of Finite Volume Flux

Vector Splittings for the Euler Equations," AIAA Journal, Vol. 24, No. 9,

1986, pp. 1453-1460

[31] Venkatakrishnan, V., "Viscous Computations Using a Direct Solver," Com-

puters and Flulds, Vol. 18, No. 2, 1990, pp. 191-204

[32] Thomas, J., Krist, S., Anderson, W., "Navier-Stokes Computations of Vor-

tical Flows Over Low-Aspect-Ratio Wings," AIAA Journal, Vol. 28, No. 2,

1990, pp. 205-212

[33] Parpia, I., private communication, 1990


